{"title":"关于叶形的 1- 邻接正典除数","authors":"Jun Lu, Xiao Hang Wu","doi":"10.1007/s00229-024-01579-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we describe the structure of the negative part of a Zariski decomposition of <span>\\(K_X+K_{{{\\mathcal {F}}}}\\)</span> for a relatively minimal foliation <span>\\((X,{{\\mathcal {F}}})\\)</span> whenever <span>\\(K_X+K_{{{\\mathcal {F}}}}\\)</span> is pseudoeffective.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the 1- adjoint canonical divisor of a foliation\",\"authors\":\"Jun Lu, Xiao Hang Wu\",\"doi\":\"10.1007/s00229-024-01579-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we describe the structure of the negative part of a Zariski decomposition of <span>\\\\(K_X+K_{{{\\\\mathcal {F}}}}\\\\)</span> for a relatively minimal foliation <span>\\\\((X,{{\\\\mathcal {F}}})\\\\)</span> whenever <span>\\\\(K_X+K_{{{\\\\mathcal {F}}}}\\\\)</span> is pseudoeffective.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01579-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01579-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the 1- adjoint canonical divisor of a foliation
In this paper, we describe the structure of the negative part of a Zariski decomposition of \(K_X+K_{{{\mathcal {F}}}}\) for a relatively minimal foliation \((X,{{\mathcal {F}}})\) whenever \(K_X+K_{{{\mathcal {F}}}}\) is pseudoeffective.