Weyl’s law for arbitrary archimedean type

IF 0.5 4区 数学 Q3 MATHEMATICS
Ayan Maiti
{"title":"Weyl’s law for arbitrary archimedean type","authors":"Ayan Maiti","doi":"10.1007/s00229-024-01584-w","DOIUrl":null,"url":null,"abstract":"<p>We generalize the work of Lindenstrauss and Venkatesh establishing Weyl’s Law for cusp forms from the spherical spectrum to arbitrary archimedean type. Weyl’s law for the spherical spectrum gives an asymptotic formula for the number of cusp forms that are bi-<span>\\(K_{\\infty }\\)</span> invariant in terms of eigenvalue <i>T</i> of the Laplacian. We prove that an analogous asymptotic holds for cusp forms with archimedean type <span>\\(\\tau \\)</span>, where the main term is multiplied by <span>\\(\\dim {\\tau }\\)</span>. While in the spherical case, the surjectivity of the Satake Map was used, in the more general case that is not available and we use Arthur’s Paley–Wiener theorem and multipliers.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"35 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01584-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the work of Lindenstrauss and Venkatesh establishing Weyl’s Law for cusp forms from the spherical spectrum to arbitrary archimedean type. Weyl’s law for the spherical spectrum gives an asymptotic formula for the number of cusp forms that are bi-\(K_{\infty }\) invariant in terms of eigenvalue T of the Laplacian. We prove that an analogous asymptotic holds for cusp forms with archimedean type \(\tau \), where the main term is multiplied by \(\dim {\tau }\). While in the spherical case, the surjectivity of the Satake Map was used, in the more general case that is not available and we use Arthur’s Paley–Wiener theorem and multipliers.

任意阿基米德类型的韦尔定律
我们将林登斯特劳斯和文卡特什的工作从球面谱到任意阿基米德类型的顶点形式建立了韦尔定律。针对球谱的韦尔定律给出了根据拉普拉奇特征值 T 的 bi-\(K_{\infty }\) 不变的尖顶形式数量的渐近公式。我们证明,对于具有阿基米德类型 \(\tau \)的尖顶形式,主项乘以 \(\dim {\tau }),也有类似的渐近公式。在球面情况下,我们使用了 Satake Map 的可射性,而在更一般的情况下,我们无法使用 Satake Map 的可射性,因此我们使用了 Arthur's Paley-Wiener theorem 和乘数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信