The $${{\,\textrm{K}\,}}$$ -theory of the moduli stacks $${{\mathcal {M}}}_2$$ and $$\overline{{{\mathcal {M}}}}_2$$

Pub Date : 2024-07-05 DOI:10.1007/s00229-024-01581-z
Dan Edidin, Zhengning Hu
{"title":"The $${{\\,\\textrm{K}\\,}}$$ -theory of the moduli stacks $${{\\mathcal {M}}}_2$$ and $$\\overline{{{\\mathcal {M}}}}_2$$","authors":"Dan Edidin, Zhengning Hu","doi":"10.1007/s00229-024-01581-z","DOIUrl":null,"url":null,"abstract":"<p>We compute the integral Grothendieck rings of the moduli stacks, <span>\\({{\\mathcal {M}}}_2\\)</span>, <span>\\(\\overline{{{\\mathcal {M}}}}_2\\)</span> of smooth and stable curves of genus two respectively. We compute <span>\\({{\\,\\textrm{K}\\,}}_0({{\\mathcal {M}}}_2)\\)</span> by using the presentation of <span>\\({{\\mathcal {M}}}_2\\)</span> as a global quotient stack given by Vistoli (Invent Math 131(3):635–644, 1998). To compute the Grothendieck ring <span>\\({{\\,\\textrm{K}\\,}}_0(\\overline{{{\\mathcal {M}}}}_2)\\)</span> we decompose <span>\\(\\overline{{{\\mathcal {M}}}}_2\\)</span> as <span>\\(\\Delta _1\\)</span> and its complement <span>\\(\\overline{{{\\mathcal {M}}}}_2 \\setminus \\Delta _1\\)</span> and use their presentations as quotient stacks given by Larson (Algebr Geom 8 (3):286–318, 2021) to compute the Grothendieck rings. We show that they are torsion-free and this, together with the Riemann–Roch isomorphism allows us to ultimately give a presentation for the integral Grothendieck ring <span>\\({{\\,\\textrm{K}\\,}}_0(\\overline{{{\\mathcal {M}}}}_2)\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01581-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We compute the integral Grothendieck rings of the moduli stacks, \({{\mathcal {M}}}_2\), \(\overline{{{\mathcal {M}}}}_2\) of smooth and stable curves of genus two respectively. We compute \({{\,\textrm{K}\,}}_0({{\mathcal {M}}}_2)\) by using the presentation of \({{\mathcal {M}}}_2\) as a global quotient stack given by Vistoli (Invent Math 131(3):635–644, 1998). To compute the Grothendieck ring \({{\,\textrm{K}\,}}_0(\overline{{{\mathcal {M}}}}_2)\) we decompose \(\overline{{{\mathcal {M}}}}_2\) as \(\Delta _1\) and its complement \(\overline{{{\mathcal {M}}}}_2 \setminus \Delta _1\) and use their presentations as quotient stacks given by Larson (Algebr Geom 8 (3):286–318, 2021) to compute the Grothendieck rings. We show that they are torsion-free and this, together with the Riemann–Roch isomorphism allows us to ultimately give a presentation for the integral Grothendieck ring \({{\,\textrm{K}\,}}_0(\overline{{{\mathcal {M}}}}_2)\).

Abstract Image

分享
查看原文
模数堆栈 $${{\mathcal {M}}_2$$ 和 $$\overline{{{\mathcal {M}}}}_2$$ 的理论
我们分别计算了属二的平滑曲线和稳定曲线的模堆积的积分格罗登第克环(\({\mathcal {M}}}_2\), \(\overline{{\mathcal {M}}}}_2\) )。我们通过使用 Vistoli(Invent Math 131(3):635-644,1998)给出的 \({{\mathcal {M}}}_2\) 作为全局商栈的呈现来计算 \({{\textrm{K}\,}}_0({{\mathcal {M}}}_2)\) 。为了计算格罗内迪克环({{\,\textrm{K}}\、}}_0(\overline{{\mathcal {M}}}}_2)\) 我们将 \(\overline{{\mathcal {M}}}}_2\) 分解为 \(\Delta _1\) 及其补集 \(\overline{{\mathcal {M}}}}_2 \setminus \Delta _1/\),并使用 Larson (Algebr Geom 8 (3):286-318, 2021)来计算格罗滕迪克环。我们证明它们是无扭转的,这一点加上黎曼-罗赫同构让我们最终给出了积分格罗内迪克环的({{\,\textrm{K}\,}}_0(\overline{{\{mathcal {M}}}}_2)\) 呈现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信