On weaker notions for Kähler-Ricci solitons

IF 0.5 4区 数学 Q3 MATHEMATICS
Nefton Pali
{"title":"On weaker notions for Kähler-Ricci solitons","authors":"Nefton Pali","doi":"10.1007/s00229-024-01577-9","DOIUrl":null,"url":null,"abstract":"<p>We show that shrinking Kähler-Ricci solitons over a compact Kähler manifold are gradient shrinking Kähler-Ricci solitons. The proof relies on a remarkable identity on the kernels of a real and a complex elliptic operator proved in our solution of the variational stability problem for gradient shrinking Kähler-Ricci solitons in Pali (Complex Manifolds 3(1):41–144, 2016).</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"138 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01577-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that shrinking Kähler-Ricci solitons over a compact Kähler manifold are gradient shrinking Kähler-Ricci solitons. The proof relies on a remarkable identity on the kernels of a real and a complex elliptic operator proved in our solution of the variational stability problem for gradient shrinking Kähler-Ricci solitons in Pali (Complex Manifolds 3(1):41–144, 2016).

关于 Kähler-Ricci 孤子的较弱概念
我们证明了紧凑凯勒流形上的收缩凯勒-里奇孤子是梯度收缩凯勒-里奇孤子。证明依赖于我们在解决帕利梯度收缩凯勒-里奇孤子的变分稳定性问题时证明的一个关于实椭圆和复椭圆算子核的显著同一性(《复杂流形》3(1):41-144, 2016)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信