On the 1- adjoint canonical divisor of a foliation

Pub Date : 2024-06-24 DOI:10.1007/s00229-024-01579-7
Jun Lu, Xiao Hang Wu
{"title":"On the 1- adjoint canonical divisor of a foliation","authors":"Jun Lu, Xiao Hang Wu","doi":"10.1007/s00229-024-01579-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we describe the structure of the negative part of a Zariski decomposition of <span>\\(K_X+K_{{{\\mathcal {F}}}}\\)</span> for a relatively minimal foliation <span>\\((X,{{\\mathcal {F}}})\\)</span> whenever <span>\\(K_X+K_{{{\\mathcal {F}}}}\\)</span> is pseudoeffective.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01579-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we describe the structure of the negative part of a Zariski decomposition of \(K_X+K_{{{\mathcal {F}}}}\) for a relatively minimal foliation \((X,{{\mathcal {F}}})\) whenever \(K_X+K_{{{\mathcal {F}}}}\) is pseudoeffective.

分享
查看原文
关于叶形的 1- 邻接正典除数
在本文中,我们描述了当 \(K_X+K_{{\mathcal {F}}}}\) 是伪有效的时候,对于一个相对最小的扇形 \((X,{{\mathcal {F}})\) 的 \(K_X+K_{{{\mathcal {F}}}}\) 的 Zariski 分解的负部分的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信