{"title":"On the 1- adjoint canonical divisor of a foliation","authors":"Jun Lu, Xiao Hang Wu","doi":"10.1007/s00229-024-01579-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we describe the structure of the negative part of a Zariski decomposition of <span>\\(K_X+K_{{{\\mathcal {F}}}}\\)</span> for a relatively minimal foliation <span>\\((X,{{\\mathcal {F}}})\\)</span> whenever <span>\\(K_X+K_{{{\\mathcal {F}}}}\\)</span> is pseudoeffective.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01579-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we describe the structure of the negative part of a Zariski decomposition of \(K_X+K_{{{\mathcal {F}}}}\) for a relatively minimal foliation \((X,{{\mathcal {F}}})\) whenever \(K_X+K_{{{\mathcal {F}}}}\) is pseudoeffective.