On $$\textrm{H}-$$ trivial line bundles on toric DM stacks of dim $$\ge 3$$

IF 0.5 4区 数学 Q3 MATHEMATICS
Lev Borisov, Chengxi Wang
{"title":"On $$\\textrm{H}-$$ trivial line bundles on toric DM stacks of dim $$\\ge 3$$","authors":"Lev Borisov, Chengxi Wang","doi":"10.1007/s00229-024-01583-x","DOIUrl":null,"url":null,"abstract":"<p>We study line bundles on smooth toric Deligne-Mumford stacks <span>\\({\\mathbb {P}}_{\\mathbf {\\Sigma }}\\)</span> of arbitrary dimension. We give a sufficient condition for when infinitely many line bundles on <span>\\({\\mathbb {P}}_{\\mathbf {\\Sigma }}\\)</span> have trivial cohomology. In dimension three, this sufficient condition is also a necessary condition under the technical assumption that <span>\\(\\mathbf {\\Sigma }\\)</span> has no more than one pair of collinear rays.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"5 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01583-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study line bundles on smooth toric Deligne-Mumford stacks \({\mathbb {P}}_{\mathbf {\Sigma }}\) of arbitrary dimension. We give a sufficient condition for when infinitely many line bundles on \({\mathbb {P}}_{\mathbf {\Sigma }}\) have trivial cohomology. In dimension three, this sufficient condition is also a necessary condition under the technical assumption that \(\mathbf {\Sigma }\) has no more than one pair of collinear rays.

Abstract Image

关于维数为$$\ge 3$$的环状DM堆上的$$text\rm{H}-$$琐细线束
我们研究任意维度的光滑环形德利尼-蒙福堆栈 \({\mathbb {P}}_{\mathbf {\Sigma }}\) 上的线束。我们给出了一个充分条件,即当\({\mathbb {P}}_{\mathbf {\Sigma }}\) 上的无限多线束具有琐碎同调时。在三维中,在 \(\mathbf {\Sigma }\) 没有多于一对共线的技术假设下,这个充分条件也是必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信