{"title":"使用规则曲面的光滑投影曲线希尔伯特方案的成分 II:非还原成分的存在","authors":"Youngook Choi, Hristo Iliev, Seonja Kim","doi":"10.1007/s00229-024-01580-0","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\mathcal {I}_{d,g,r}\\)</span> be the union of irreducible components of the Hilbert scheme whose general points represent smooth, irreducible, non-degenerate curves of degree <i>d</i> and genus <i>g</i> in <span>\\(\\mathbb {P}^r\\)</span>. Using a family of curves found on ruled surfaces over smooth curves of genus <span>\\(\\gamma \\)</span>, we show that for <span>\\(\\gamma \\ge 7\\)</span> and <span>\\(g \\ge 6 \\gamma + 5\\)</span>, the scheme <span>\\(\\mathcal {I}_{2g-4\\gamma + 1, g, g - 3\\gamma + 1}\\)</span> acquires a non-reduced component <span>\\(\\mathcal {D}^{\\prime }\\)</span> such that <span>\\({\\text {dim}}T_{[X^{\\prime }]} \\mathcal {D}^{\\prime } = {\\text {dim}}\\mathcal {D}^{\\prime } + 1\\)</span> for a general point <span>\\([X^{\\prime }] \\in \\mathcal {D}^{\\prime }\\)</span>.\n</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"28 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Components of the Hilbert scheme of smooth projective curves using ruled surfaces II: existence of non-reduced components\",\"authors\":\"Youngook Choi, Hristo Iliev, Seonja Kim\",\"doi\":\"10.1007/s00229-024-01580-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\mathcal {I}_{d,g,r}\\\\)</span> be the union of irreducible components of the Hilbert scheme whose general points represent smooth, irreducible, non-degenerate curves of degree <i>d</i> and genus <i>g</i> in <span>\\\\(\\\\mathbb {P}^r\\\\)</span>. Using a family of curves found on ruled surfaces over smooth curves of genus <span>\\\\(\\\\gamma \\\\)</span>, we show that for <span>\\\\(\\\\gamma \\\\ge 7\\\\)</span> and <span>\\\\(g \\\\ge 6 \\\\gamma + 5\\\\)</span>, the scheme <span>\\\\(\\\\mathcal {I}_{2g-4\\\\gamma + 1, g, g - 3\\\\gamma + 1}\\\\)</span> acquires a non-reduced component <span>\\\\(\\\\mathcal {D}^{\\\\prime }\\\\)</span> such that <span>\\\\({\\\\text {dim}}T_{[X^{\\\\prime }]} \\\\mathcal {D}^{\\\\prime } = {\\\\text {dim}}\\\\mathcal {D}^{\\\\prime } + 1\\\\)</span> for a general point <span>\\\\([X^{\\\\prime }] \\\\in \\\\mathcal {D}^{\\\\prime }\\\\)</span>.\\n</p>\",\"PeriodicalId\":49887,\"journal\":{\"name\":\"Manuscripta Mathematica\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manuscripta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01580-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01580-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 \(\mathcal {I}_{d,g,r}\) 是希尔伯特方案中不可还原成分的联合,其一般点代表 \(\mathbb {P}^r\) 中阶数为 d、属数为 g 的光滑、不可还原、非退化曲线。利用在属\(\gamma \)的光滑曲线的规则曲面上发现的曲线族,我们证明了对于\(\gamma \ge 7\) 和\(g \ge 6 \gamma + 5\)、方案 \(\mathcal {I}_{2g-4\gamma + 1, g, g - 3\gamma + 1}\) 获得了一个非还原成分 \(\mathcal {D}^{\prime }\) ,这样 \({\text {dim}}T_{[X^{\prime }]}= {\text {dim}T_{[X^{\prime }]}= {\text {dim}}\mathcal {D}^{\prime }+ 1) for a general point \([X^{\prime }] \in \mathcal {D}^{\prime }\).
Components of the Hilbert scheme of smooth projective curves using ruled surfaces II: existence of non-reduced components
Let \(\mathcal {I}_{d,g,r}\) be the union of irreducible components of the Hilbert scheme whose general points represent smooth, irreducible, non-degenerate curves of degree d and genus g in \(\mathbb {P}^r\). Using a family of curves found on ruled surfaces over smooth curves of genus \(\gamma \), we show that for \(\gamma \ge 7\) and \(g \ge 6 \gamma + 5\), the scheme \(\mathcal {I}_{2g-4\gamma + 1, g, g - 3\gamma + 1}\) acquires a non-reduced component \(\mathcal {D}^{\prime }\) such that \({\text {dim}}T_{[X^{\prime }]} \mathcal {D}^{\prime } = {\text {dim}}\mathcal {D}^{\prime } + 1\) for a general point \([X^{\prime }] \in \mathcal {D}^{\prime }\).
期刊介绍:
manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.