{"title":"关于 Kähler-Ricci 孤子的较弱概念","authors":"Nefton Pali","doi":"10.1007/s00229-024-01577-9","DOIUrl":null,"url":null,"abstract":"<p>We show that shrinking Kähler-Ricci solitons over a compact Kähler manifold are gradient shrinking Kähler-Ricci solitons. The proof relies on a remarkable identity on the kernels of a real and a complex elliptic operator proved in our solution of the variational stability problem for gradient shrinking Kähler-Ricci solitons in Pali (Complex Manifolds 3(1):41–144, 2016).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On weaker notions for Kähler-Ricci solitons\",\"authors\":\"Nefton Pali\",\"doi\":\"10.1007/s00229-024-01577-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that shrinking Kähler-Ricci solitons over a compact Kähler manifold are gradient shrinking Kähler-Ricci solitons. The proof relies on a remarkable identity on the kernels of a real and a complex elliptic operator proved in our solution of the variational stability problem for gradient shrinking Kähler-Ricci solitons in Pali (Complex Manifolds 3(1):41–144, 2016).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01577-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01577-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that shrinking Kähler-Ricci solitons over a compact Kähler manifold are gradient shrinking Kähler-Ricci solitons. The proof relies on a remarkable identity on the kernels of a real and a complex elliptic operator proved in our solution of the variational stability problem for gradient shrinking Kähler-Ricci solitons in Pali (Complex Manifolds 3(1):41–144, 2016).