Transactions of the American Mathematical Society最新文献

筛选
英文 中文
Sums of random polynomials with differing degrees 不同度数的随机多项式之和
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-25 DOI: 10.1090/tran/9128
Isabelle Kraus, Marcus Michelen, Sean O’Rourke
{"title":"Sums of random polynomials with differing degrees","authors":"Isabelle Kraus, Marcus Michelen, Sean O’Rourke","doi":"10.1090/tran/9128","DOIUrl":"https://doi.org/10.1090/tran/9128","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu\"> <mml:semantics> <mml:mi>ν<!-- ν --></mml:mi> <mml:annotation encoding=\"application/x-tex\">nu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be probability measures in the complex plane, and let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be independent random polynomials of degree <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose roots are chosen independently from <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu\"> <mml:semantics> <mml:mi>ν<!-- ν --></mml:mi> <mml:annotation encoding=\"application/x-tex\">nu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively. Under assumptions on the measures <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu\"> <mml:semantics> <mml:mi>ν<!-- ν --></mml:mi> <mml:annotation encoding=\"application/x-tex\">nu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the limiting distribution for the zeros of the sum <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p plus q\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>+</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p+q</mml:annotation> </mml:semantics> </mml:math> </inline-fo","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rees algebras of sparse determinantal ideals 稀疏行列式理想的里斯代数
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-25 DOI: 10.1090/tran/9101
Ela Celikbas, Emilie Dufresne, Louiza Fouli, Elisa Gorla, Kuei-Nuan Lin, Claudia Polini, Irena Swanson
{"title":"Rees algebras of sparse determinantal ideals","authors":"Ela Celikbas, Emilie Dufresne, Louiza Fouli, Elisa Gorla, Kuei-Nuan Lin, Claudia Polini, Irena Swanson","doi":"10.1090/tran/9101","DOIUrl":"https://doi.org/10.1090/tran/9101","url":null,"abstract":"<p>We determine the defining equations of the Rees algebra and of the special fiber ring of the ideal of maximal minors of a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 times n\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2times n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> sparse matrix. We prove that their initial algebras are ladder determinantal rings. This allows us to show that the Rees algebra and the special fiber ring are Cohen-Macaulay domains, they are Koszul, they have rational singularities in characteristic zero and are F-rational in positive characteristic.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chern-Weil theory for ∞-local systems ∞局域系统的切尔-韦尔理论
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-25 DOI: 10.1090/tran/9068
Camilo Arias Abad, Santiago Pineda Montoya, Alexander Quintero Vélez
{"title":"Chern-Weil theory for ∞-local systems","authors":"Camilo Arias Abad, Santiago Pineda Montoya, Alexander Quintero Vélez","doi":"10.1090/tran/9068","DOIUrl":"https://doi.org/10.1090/tran/9068","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a compact connected Lie group with Lie algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"fraktur\">g</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that the category <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper L times bold o times bold c Subscript normal infinity Baseline left-parenthesis upper B upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"bold\">L</mml:mi> <mml:mi mathvariant=\"bold\">o</mml:mi> <mml:mi mathvariant=\"bold\">c</mml:mi> </mml:mrow> </mml:mrow> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msub> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>B</mml:mi> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">operatorname {mathbf {Loc}} _infty (BG)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal infinity\"> <mml:semantics> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-local systems on the classifying space of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be described infinitesimally as the category <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper I bold n bold f bold upper L bold o bold c Subscript normal infinity Baseline left-parenthesis German g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"bold\">I</mml:mi> <mml:mi mathvariant=\"bold\">n</mml:mi> <mml:mi mathvariant=\"bold\">f</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"bold\">L</mml:mi> <mml:mi mathvariant=\"bold\">o</mml:mi> <mml:mi mathvariant=\"bold\">c</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"fraktur\">g</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On generalized main conjectures and 𝑝-adic Stark conjectures for Artin motives 关于阿廷动因的广义主猜想和𝑝-adic斯塔克猜想
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-25 DOI: 10.1090/tran/9131
Alexandre Maksoud
{"title":"On generalized main conjectures and 𝑝-adic Stark conjectures for Artin motives","authors":"Alexandre Maksoud","doi":"10.1090/tran/9131","DOIUrl":"https://doi.org/10.1090/tran/9131","url":null,"abstract":"<p>Given an odd prime number <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stabilized Artin representation <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho\"> <mml:semantics> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">rho</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we introduce a family of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic Stark regulators and we formulate an Iwasawa-Greenberg main conjecture and a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic Stark conjecture which can be seen as an explicit strengthening of conjectures by Perrin-Riou and Benois in the context of Artin motives. We show that these conjectures imply the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-part of the Tamagawa number conjecture for Artin motives at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">s=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and we obtain unconditional results on the torsionness of Selmer groups. We also relate our new conjectures with various main conjectures and variants of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"a","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A rigidity theorem for asymptotically flat static manifolds and its applications 渐近平坦静态流形的刚性定理及其应用
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-25 DOI: 10.1090/tran/9134
Brian Harvie, Ye-Kai Wang
{"title":"A rigidity theorem for asymptotically flat static manifolds and its applications","authors":"Brian Harvie, Ye-Kai Wang","doi":"10.1090/tran/9134","DOIUrl":"https://doi.org/10.1090/tran/9134","url":null,"abstract":"<p>In this paper, we study the Minkowski-type inequality for asymptotically flat static manifolds <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper M Superscript n Baseline comma g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(M^{n},g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with boundary and with dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than 8\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n&gt;8</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that was established by McCormick [Proc. Amer. Math. Soc. 146 (2018), pp. 4039–4046]. First, we show that any asymptotically flat static <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper M Superscript n Baseline comma g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(M^{n},g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which achieves the equality and has CMC or equipotential boundary is isometric to a rotationally symmetric region of the Schwarzschild manifold. Then, we apply conformal techniques to derive a new Minkowski-type inequality for the level sets of bounded static potentials. Taken together, these provide a robust approach to detecting rotational symmetry of asymptotically flat static systems.</p> <p>As an application, we prove global uniqueness of static metric extensions for the Bartnik data induced by both Schwarzschild coordinate spheres and Euclidean coordinate spheres in dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than 8\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n &gt; 8</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under the natural condition of <italic>Schwarzschild stability</italic>. This generalizes an earlier result of Miao [Classical Quantum Gravity 22 (2005), pp. L53–L59]. We also establish uniqueness for equipotential photon surfaces with small Einstein-Hilbert energy. This is interesting to compare with other recent uniqueness results for static photon surfaces and black holes","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A higher Gross–Zagier formula and the structure of Selmer groups 更高的格罗斯-扎吉尔公式和塞尔玛群的结构
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-25 DOI: 10.1090/tran/9125
Chan-Ho Kim
{"title":"A higher Gross–Zagier formula and the structure of Selmer groups","authors":"Chan-Ho Kim","doi":"10.1090/tran/9125","DOIUrl":"https://doi.org/10.1090/tran/9125","url":null,"abstract":"<p>We describe a Kolyvagin system-theoretic refinement of Gross–Zagier formula by comparing Heegner point Kolyvagin systems with Kurihara numbers when the root number of a rational elliptic curve <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over an imaginary quadratic field <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"negative 1\"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. When the root number of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is 1, we first establish the structure theorem of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>p</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">p^infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Selmer group of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The description is given by the values of certain families of quaternionic automorphic forms, which is a part of bipartite Euler systems. By comparing bipartite Euler systems with Kurihara numbers, we also obtain an analogous refinement of Waldspurger formula. No low analytic rank assumption is imposed in both refinements.</p> <p>We also prove the equivalence between the no","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted CLR type bounds in two dimensions 二维加权 CLR 类型界限
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-25 DOI: 10.1090/tran/9124
Rupert Frank, Ari Laptev, Larry Read
{"title":"Weighted CLR type bounds in two dimensions","authors":"Rupert Frank, Ari Laptev, Larry Read","doi":"10.1090/tran/9124","DOIUrl":"https://doi.org/10.1090/tran/9124","url":null,"abstract":"<p>We derive weighted versions of the Cwikel–Lieb–Rozenblum inequality for the Schrödinger operator in two dimensions with a nontrivial Aharonov–Bohm magnetic field. Our bounds capture the optimal dependence on the flux and we identify a class of long-range potentials that saturate our bounds in the strong coupling limit. We also extend our analysis to the two-dimensional Schrödinger operator acting on antisymmetric functions and obtain similar results.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bound for the torsion on subvarieties of abelian varieties 无常变体子变量上的扭转约束
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-17 DOI: 10.1090/tran/8933
Aurélien Galateau, César Martínez
{"title":"A bound for the torsion on subvarieties of abelian varieties","authors":"Aurélien Galateau, César Martínez","doi":"10.1090/tran/8933","DOIUrl":"https://doi.org/10.1090/tran/8933","url":null,"abstract":"<p>We give a uniform bound on the degree of the maximal torsion cosets for subvarieties of an abelian variety. The proof combines algebraic interpolation and a theorem of Serre on homotheties in the Galois representation associated to the torsion subgroup of an abelian variety.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CMC-1 surfaces via osculating Möbius transformations between circle patterns 通过圆图案之间的莫比乌斯环形变换获得 CMC-1 曲面
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-17 DOI: 10.1090/tran/9121
Wai Yeung Lam
{"title":"CMC-1 surfaces via osculating Möbius transformations between circle patterns","authors":"Wai Yeung Lam","doi":"10.1090/tran/9121","DOIUrl":"https://doi.org/10.1090/tran/9121","url":null,"abstract":"<p>Given two circle patterns of the same combinatorics in the plane, the Möbius transformations mapping circumdisks of one to the other induce a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P upper S upper L left-parenthesis 2 comma double-struck upper C right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mi>S</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">PSL(2,mathbb {C})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-valued function on the dual graph. Such a function plays the role of an osculating Möbius transformation and induces a realization of the dual graph in hyperbolic space. We characterize the realizations and obtain a one-to-one correspondence in the cases that the two circle patterns share the same discrete conformal structure. These correspondences are analogous to the Weierstrass representation for surfaces with constant mean curvature <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H identical-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Hequiv 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in hyperbolic space. We further establish convergence on triangular lattices.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3-2-1 foliations for Reeb flows on the tight 3-sphere 紧密三球面上里布流的 3-2-1 叶形
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-17 DOI: 10.1090/tran/9119
Carolina de Oliveira
{"title":"3-2-1 foliations for Reeb flows on the tight 3-sphere","authors":"Carolina de Oliveira","doi":"10.1090/tran/9119","DOIUrl":"https://doi.org/10.1090/tran/9119","url":null,"abstract":"<p>We study the existence of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 minus 2 minus 1\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3-2-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> foliations adapted to Reeb flows on the tight <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-sphere. These foliations admit precisely three binding orbits whose Conley-Zehnder indices are <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\"application/x-tex\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\"application/x-tex\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively. All regular leaves are disks and annuli asymptotic to the binding orbits. Our main results provide sufficient conditions for the existence of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 minus 2 minus 1\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3-2-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> foliations with prescribed binding orbits. We also exhibit a concrete Hamiltonian on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript 4\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>4</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {R}^4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> admitting <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 minus 2 minus 1\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3-2-1</","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信