更高的格罗斯-扎吉尔公式和塞尔玛群的结构

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chan-Ho Kim
{"title":"更高的格罗斯-扎吉尔公式和塞尔玛群的结构","authors":"Chan-Ho Kim","doi":"10.1090/tran/9125","DOIUrl":null,"url":null,"abstract":"<p>We describe a Kolyvagin system-theoretic refinement of Gross–Zagier formula by comparing Heegner point Kolyvagin systems with Kurihara numbers when the root number of a rational elliptic curve <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over an imaginary quadratic field <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"negative 1\"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. When the root number of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is 1, we first establish the structure theorem of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>p</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">p^\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Selmer group of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The description is given by the values of certain families of quaternionic automorphic forms, which is a part of bipartite Euler systems. By comparing bipartite Euler systems with Kurihara numbers, we also obtain an analogous refinement of Waldspurger formula. No low analytic rank assumption is imposed in both refinements.</p> <p>We also prove the equivalence between the non-triviality of various “Kolyvagin systems” and the corresponding main conjecture localized at the augmentation ideal. As consequences, we obtain new applications of (weaker versions of) the Heegner point main conjecture and the anticyclotomic main conjecture to the structure of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>p</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">p^\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Selmer groups of elliptic curves of arbitrary rank. In particular, the Heegner point main conjecture localized at the augmentation ideal implies the strong rank one <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-converse to the theorem of Gross–Zagier and Kolyvagin.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A higher Gross–Zagier formula and the structure of Selmer groups\",\"authors\":\"Chan-Ho Kim\",\"doi\":\"10.1090/tran/9125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe a Kolyvagin system-theoretic refinement of Gross–Zagier formula by comparing Heegner point Kolyvagin systems with Kurihara numbers when the root number of a rational elliptic curve <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E\\\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over an imaginary quadratic field <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"negative 1\\\"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. When the root number of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E\\\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is 1, we first establish the structure theorem of the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p Superscript normal infinity\\\"> <mml:semantics> <mml:msup> <mml:mi>p</mml:mi> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">p^\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Selmer group of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E\\\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The description is given by the values of certain families of quaternionic automorphic forms, which is a part of bipartite Euler systems. By comparing bipartite Euler systems with Kurihara numbers, we also obtain an analogous refinement of Waldspurger formula. No low analytic rank assumption is imposed in both refinements.</p> <p>We also prove the equivalence between the non-triviality of various “Kolyvagin systems” and the corresponding main conjecture localized at the augmentation ideal. As consequences, we obtain new applications of (weaker versions of) the Heegner point main conjecture and the anticyclotomic main conjecture to the structure of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p Superscript normal infinity\\\"> <mml:semantics> <mml:msup> <mml:mi>p</mml:mi> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">p^\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Selmer groups of elliptic curves of arbitrary rank. In particular, the Heegner point main conjecture localized at the augmentation ideal implies the strong rank one <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-converse to the theorem of Gross–Zagier and Kolyvagin.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9125\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9125","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当在虚二次域 K K 上的有理椭圆曲线 E E 的根号为 - 1 -1 时,我们通过比较 Heegner 点 Kolyvagin 系统与 Kurihara 数字,描述了对 Gross-Zagier 公式的 Kolyvagin 系统理论改进。当 K K 上 E E 的根号为 1 时,我们首先建立 K K 上 E E 的 p ∞ p^infty -Selmer 群的结构定理。描述是由某些四元自变形式族的值给出的,而四元自变形式族是双元欧拉系统的一部分。通过将双方位欧拉系统与栗原数相比较,我们还得到了类似的沃德斯伯格公式的细化。在这两种改进中,都没有施加低解析秩假设。我们还证明了各种 "Kolyvagin 系统 "的非琐碎性与在增理想局部的相应主猜想之间的等价性。作为结果,我们得到了希格纳点主猜想和反循环主猜想在任意阶椭圆曲线的 p ∞ p^infty -Selmer 群结构中的新应用(弱化版本)。特别是,希格纳点主猜想局部化于增量理想意味着格罗斯-扎吉尔(Gross-Zagier)和科利瓦金(Kolyvagin)定理的强秩一 p p -逆定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A higher Gross–Zagier formula and the structure of Selmer groups

We describe a Kolyvagin system-theoretic refinement of Gross–Zagier formula by comparing Heegner point Kolyvagin systems with Kurihara numbers when the root number of a rational elliptic curve E E over an imaginary quadratic field K K is 1 -1 . When the root number of E E over K K is 1, we first establish the structure theorem of the p p^\infty -Selmer group of E E over K K . The description is given by the values of certain families of quaternionic automorphic forms, which is a part of bipartite Euler systems. By comparing bipartite Euler systems with Kurihara numbers, we also obtain an analogous refinement of Waldspurger formula. No low analytic rank assumption is imposed in both refinements.

We also prove the equivalence between the non-triviality of various “Kolyvagin systems” and the corresponding main conjecture localized at the augmentation ideal. As consequences, we obtain new applications of (weaker versions of) the Heegner point main conjecture and the anticyclotomic main conjecture to the structure of p p^\infty -Selmer groups of elliptic curves of arbitrary rank. In particular, the Heegner point main conjecture localized at the augmentation ideal implies the strong rank one p p -converse to the theorem of Gross–Zagier and Kolyvagin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信