Adrian Ujin Yap, Xian-Han Zhang, Ye Cao, Kai-Yuan Fu
{"title":"Degenerative temporomandibular joint diseases and their relation with sleep and emotional disturbance.","authors":"Adrian Ujin Yap, Xian-Han Zhang, Ye Cao, Kai-Yuan Fu","doi":"10.1080/08869634.2022.2050976","DOIUrl":"10.1080/08869634.2022.2050976","url":null,"abstract":"<p><strong>Objective: </strong>The relation of degenerative temporomandibular joint (TMJ) diseases (DJDs) with sleep and emotional disturbance were investigated.</p><p><strong>Methods: </strong>CBCT examination of patients (n = 358) with DC/TMD-defined intra-articular temporomandibular disorders was performed and stratified into NN: no DJD and no arthralgia; NA: no DJD with arthralgia; TO: osteoarthrosis; and TR: osteoarthritis. Sleep and emotional disturbance were assessed with the Pittsburgh Sleep Quality Index (PSQI) and Depression Anxiety Stress Scale-21 (DASS-21). Data were evaluated using non-parametric and multivariate logistic regression analyses (α = 0.05).</p><p><strong>Results: </strong>Distributions of NN, NA, TO, and TR groups were 23.2%, 27.1%,19.0%, and 30.7%, respectively. No significant differences in total-PSQI/DASS scores were detected among the four groups. The presence of pain and stress predicted poor quality sleep with odds ratios of 10.75 and 1.07, accordingly.</p><p><strong>Conclusion: </strong>Sleep quality was affected more by arthralgia and stress than the presence of TMJ DJDs.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"365 1","pages":"762-769"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83016397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Soap bubbles and convex cones: optimal quantitative rigidity","authors":"Giorgio Poggesi","doi":"10.1090/tran/9207","DOIUrl":"https://doi.org/10.1090/tran/9207","url":null,"abstract":"<p>We consider a class of recent rigidity results in a convex cone <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Sigma subset-of-or-equal-to double-struck upper R Superscript upper N\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Σ</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Sigma subseteq mathbb {R}^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These include overdetermined Serrin-type problems for a mixed boundary value problem relative to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Sigma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Σ</mml:mi> <mml:annotation encoding=\"application/x-tex\">Sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, Alexandrov’s soap bubble-type results relative to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Sigma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Σ</mml:mi> <mml:annotation encoding=\"application/x-tex\">Sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and Heintze-Karcher’s inequality relative to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Sigma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Σ</mml:mi> <mml:annotation encoding=\"application/x-tex\">Sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Each rigidity result is obtained here by means of a single integral identity and holds true under weak integral overdeterminations in possibly non-smooth cones. Optimal quantitative stability estimates are obtained in terms of an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-pseudodistance. In particular, the optimal stability estimate for Heintze-Karcher’s inequality is new even in the classical case <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Sigma equals double-struck upper R Superscript upper N\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Σ</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Sigma = mathbb {R}^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p> <p>Stability bounds in terms of the Hausdorff distance are also provided.</p> <p>Severa","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"49 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Commensurated hyperbolic subgroups","authors":"Nir Lazarovich, Alex Margolis, Mahan Mj","doi":"10.1090/tran/9209","DOIUrl":"https://doi.org/10.1090/tran/9209","url":null,"abstract":"<p>We show that if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a non-elementary hyperbolic commensurated subgroup of infinite index in a hyperbolic group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is virtually a free product of hyperbolic surface groups and free groups. We prove that whenever a one-ended hyperbolic group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a fiber of a non-trivial hyperbolic bundle then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> virtually splits over a 2-ended subgroup.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"15 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Endomorphisms of mapping tori","authors":"Christoforos Neofytidis","doi":"10.1090/tran/9203","DOIUrl":"https://doi.org/10.1090/tran/9203","url":null,"abstract":"<p>We classify in terms of Hopf-type properties mapping tori of residually finite Poincaré Duality groups with non-zero Euler characteristic. This generalises and gives a new proof of the analogous classification for fibered 3-manifolds. Various applications are given. In particular, we deduce that rigidity results for Gromov hyperbolic groups hold for the above mapping tori with trivial center.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"217 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solving the Kerzman’s problem on the sup-norm estimate for overline{∂} on product domains","authors":"Song-Ying Li","doi":"10.1090/tran/9208","DOIUrl":"https://doi.org/10.1090/tran/9208","url":null,"abstract":"<p>In this paper, the author solves the long term open problem of Kerzman on sup-norm estimate for Cauchy-Riemann equation on polydisc in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional complex space. The problem has been open since 1971. He also extends and solves the problem on product domains <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega Superscript n\"> <mml:semantics> <mml:msup> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">Omega ^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:annotation encoding=\"application/x-tex\">Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is any bounded domain in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript 1 comma alpha\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^{1,alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> boundary for some <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">alpha >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"84 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polynomial decay of correlations for nonpositively curved surfaces","authors":"Yuri Lima, Carlos Matheus, Ian Melbourne","doi":"10.1090/tran/9182","DOIUrl":"https://doi.org/10.1090/tran/9182","url":null,"abstract":"<p>We prove polynomial decay of correlations for geodesic flows on a class of nonpositively curved surfaces where zero curvature only occurs along one closed geodesic. We also prove that various statistical limit laws, including the central limit theorem, are satisfied by this class of geodesic flows.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"14 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141519505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}