Daniel Le, Bao Le Hung, Stefano Morra, Chol Park, Zicheng Qian
{"title":"Colength one deformation rings","authors":"Daniel Le, Bao Le Hung, Stefano Morra, Chol Park, Zicheng Qian","doi":"10.1090/tran/9191","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K slash double-struck upper Q Subscript p\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">K/\\mathbb {Q}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finite unramified extension, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar colon normal upper G normal a normal l left-parenthesis double-struck upper Q overbar Subscript p Baseline slash upper K right-parenthesis right-arrow normal upper G normal upper L Subscript n Baseline left-parenthesis double-struck upper F overbar Subscript p Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mo>:</mml:mo> <mml:mrow> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">a</mml:mi> <mml:mi mathvariant=\"normal\">l</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">→</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }:\\mathrm {Gal}(\\overline {\\mathbb {Q}}_p/K)\\rightarrow \\mathrm {GL}_n(\\overline {\\mathbb {F}}_p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a continuous representation, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a tame inertial type of dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We explicitly determine, under mild regularity conditions on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the potentially crystalline deformation ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R Subscript rho overbar Superscript eta comma tau\"> <mml:semantics> <mml:msubsup> <mml:mi>R</mml:mi> <mml:mrow> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">R^{\\eta ,\\tau }_{\\overline {\\rho }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in parallel Hodge–Tate weights <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"eta equals left-parenthesis n minus 1 comma midline-horizontal-ellipsis comma 1 comma 0 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\eta =(n-1,\\cdots ,1,0)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and inertial type <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when the <italic>shape</italic> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar\"> <mml:semantics> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has colength at most one. This has application to the modularity of a class of shadow weights in the weight part of Serre’s conjecture. Along the way we make unconditional the local-global compatibility results of Park and Qian [Mém. Soc. Math. Fr. (N.S.) 173 (2022), pp. vi+150].</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9191","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let K/QpK/\mathbb {Q}_p be a finite unramified extension, ρ¯:Gal(Q¯p/K)→GLn(F¯p)\overline {\rho }:\mathrm {Gal}(\overline {\mathbb {Q}}_p/K)\rightarrow \mathrm {GL}_n(\overline {\mathbb {F}}_p) a continuous representation, and τ\tau a tame inertial type of dimension nn. We explicitly determine, under mild regularity conditions on τ\tau, the potentially crystalline deformation ring Rρ¯η,τR^{\eta ,\tau }_{\overline {\rho }} in parallel Hodge–Tate weights η=(n−1,⋯,1,0)\eta =(n-1,\cdots ,1,0) and inertial type τ\tau when the shape of ρ¯\overline {\rho } with respect to τ\tau has colength at most one. This has application to the modularity of a class of shadow weights in the weight part of Serre’s conjecture. Along the way we make unconditional the local-global compatibility results of Park and Qian [Mém. Soc. Math. Fr. (N.S.) 173 (2022), pp. vi+150].
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.