{"title":"Projective dimensions of hyperplane arrangements","authors":"Takuro Abe","doi":"10.1090/tran/9196","DOIUrl":"https://doi.org/10.1090/tran/9196","url":null,"abstract":"<p>We establish a general theory for projective dimensions of the logarithmic derivation modules of hyperplane arrangements. This includes an addition-deletion and a restriction theorem, a Yoshinaga type result, and a division theorem for projective dimensions of hyperplane arrangements. These new theorems are all generalizations of classical results for free arrangements, which is the special case of projective dimension zero. To prove these results, we introduce several new methods to determine the surjectivity of the Euler and the Ziegler restriction maps, which is combinatorially determined when the projective dimension is not maximal for all localizations. Also, we introduce a new class of arrangements in which the projective dimension is combinatorially determined.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compressible Euler limit from Boltzmann equation with complete diffusive boundary condition in half-space","authors":"Ning Jiang, Yi-Long Luo, Shaojun Tang","doi":"10.1090/tran/9197","DOIUrl":"https://doi.org/10.1090/tran/9197","url":null,"abstract":"<p>In this paper, we prove the compressible Euler limit from the Boltzmann equation with hard sphere collisional kernel and complete diffusive boundary condition in half-space by employing the Hilbert expansion which includes interior and Knudsen layers. This rigorously justifies the corresponding formal analysis in Sone’s book [<italic>Molecular gas dynamics</italic>, Birkhäuser Boston, Inc., Boston, MA, 2007] in the context of short time smooth solutions, and also generalizes the classic Caflisch’s result [Comm. Pure Appl. Math. 33 (1980), pp. 651–666] to initial-boundary problem case.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141519507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vladimir Mitankin, Masahiro Nakahara, Sam Streeter
{"title":"Semi-integral Brauer–Manin obstruction and quadric orbifold pairs","authors":"Vladimir Mitankin, Masahiro Nakahara, Sam Streeter","doi":"10.1090/tran/9170","DOIUrl":"https://doi.org/10.1090/tran/9170","url":null,"abstract":"<p>We study local-global principles for two notions of semi-integral points, termed Campana points and Darmon points. In particular, we develop a semi-integral version of the Brauer–Manin obstruction interpolating between Manin’s classical version for rational points and the integral version developed by Colliot-Thélène and Xu. We determine the status of local-global principles, and obstructions to them, in two families of orbifolds naturally associated to quadric hypersurfaces. Further, we establish a quantitative result measuring the failure of the semi-integral Brauer–Manin obstruction to account for its integral counterpart for affine quadrics.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cuntz algebra automorphisms: Graphs and stability of permutations","authors":"Francesco Brenti, Roberto Conti, Gleb Nenashev","doi":"10.1090/tran/9159","DOIUrl":"https://doi.org/10.1090/tran/9159","url":null,"abstract":"<p>We characterize the permutative automorphisms of the Cuntz algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O Subscript n\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">O</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">mathcal {O}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (namely, stable permutations) in terms of two sequences of graphs that we associate to any permutation of a discrete hypercube <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket n right-bracket Superscript t\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mi>n</mml:mi> <mml:msup> <mml:mo stretchy=\"false\">]</mml:mo> <mml:mi>t</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">[n]^t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As applications we show that in the limit of large <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\"> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding=\"application/x-tex\">t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (resp. <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) almost all permutations are not stable, thus proving Conj. 12.5 of Brenti and Conti [Adv. Math. 381 (2021), p. 60], characterize (and enumerate) stable quadratic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"4\"> <mml:semantics> <mml:mn>4</mml:mn> <mml:annotation encoding=\"application/x-tex\">4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5\"> <mml:semantics> <mml:mn>5</mml:mn> <mml:annotation encoding=\"application/x-tex\">5</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cycles, as well as a notable class of stable quadratic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\"application/x-tex\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cycles, i.e. those admitting a compatible cyclic factorization by stable transpositions. Some of our results use new combinatorial concepts that may be of independent interest.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effective approximation to complex algebraic numbers by algebraic numbers of bounded degree","authors":"Prajeet Bajpai, Yann Bugeaud","doi":"10.1090/tran/9190","DOIUrl":"https://doi.org/10.1090/tran/9190","url":null,"abstract":"<p>We establish the first effective improvements on the Liouville inequality for approximation to complex non-real algebraic numbers by complex algebraic numbers of degree at most <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"4\"> <mml:semantics> <mml:mn>4</mml:mn> <mml:annotation encoding=\"application/x-tex\">4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141152897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface counterexamples to the Eisenbud-Goto conjecture","authors":"Jong In Han, Sijong Kwak","doi":"10.1090/tran/9192","DOIUrl":"https://doi.org/10.1090/tran/9192","url":null,"abstract":"<p>It is well known that the Eisenbud-Goto regularity conjecture is true for arithmetically Cohen-Macaulay varieties, projective curves, smooth surfaces, smooth threefolds in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 5\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>5</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {P}^5</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and toric varieties of codimension two. After J. McCullough and I. Peeva constructed counterexamples in 2018, it has been an interesting question to find the categories such that the Eisenbud-Goto conjecture holds. So far, surface counterexamples have not been found while counterexamples of any dimension greater or equal to 3 are known.</p> <p>In this paper, we construct counterexamples to the Eisenbud-Goto conjecture for projective surfaces in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 4\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>4</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {P}^4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and investigate projective invariants, cohomological properties, and geometric properties. The counterexamples are constructed via binomial rational maps between projective spaces.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141532722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Equivariant lattice bases","authors":"Dinh Le, Tim Römer","doi":"10.1090/tran/9193","DOIUrl":"https://doi.org/10.1090/tran/9193","url":null,"abstract":"<p>We study lattices in free abelian groups of infinite rank that are invariant under the action of the infinite symmetric group, with emphasis on finiteness of their equivariant bases. Our framework provides a new method for proving finiteness results in algebraic statistics. As an illustration, we show that every invariant lattice in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Superscript left-parenthesis double-struck upper N times left-bracket c right-bracket right-parenthesis\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> <mml:mo>×</mml:mo> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mi>c</mml:mi> <mml:mo stretchy=\"false\">]</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {Z}^{(mathbb {N}times [c])}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c element-of double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">cin mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, has a finite equivariant Graver basis. This result generalizes and strengthens several finiteness results about Markov bases in the literature.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141152961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Witt rings of many flag varieties are exterior algebras","authors":"Tobias Hemmert, Marcus Zibrowius","doi":"10.1090/tran/9188","DOIUrl":"https://doi.org/10.1090/tran/9188","url":null,"abstract":"<p>The Witt ring of a complex flag variety describes the interesting – i.e. torsion – part of its topological KO-theory. We show that for a large class of flag varieties, these Witt rings are exterior algebras, and that the degrees of the generators can be determined by Dynkin diagram combinatorics. Besides a few well-studied examples such as full flag varieties and projective spaces, this class includes many flag varieties whose Witt rings were previously unknown, including many flag varieties of exceptional types. In particular, it includes all flag varieties of types <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G 2\"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">G_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F 4\"> <mml:semantics> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>4</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">F_4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The results also extend to flag varieties over other algebraically closed fields.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141519506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Locally trivial monodromy of moduli spaces of sheaves on K3 surfaces","authors":"Claudio Onorati, Arvid Perego, Antonio Rapagnetta","doi":"10.1090/tran/9185","DOIUrl":"https://doi.org/10.1090/tran/9185","url":null,"abstract":"<p>In this paper we study monodromy operators on moduli spaces <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M Subscript v Baseline left-parenthesis upper S comma upper H right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>v</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo>,</mml:mo> <mml:mi>H</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">M_v(S,H)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of sheaves on K3 surfaces with non-primitive Mukai vectors <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v\"> <mml:semantics> <mml:mi>v</mml:mi> <mml:annotation encoding=\"application/x-tex\">v</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. If we write <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v equals m w\"> <mml:semantics> <mml:mrow> <mml:mi>v</mml:mi> <mml:mo>=</mml:mo> <mml:mi>m</mml:mi> <mml:mi>w</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">v=mw</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">m>1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"w\"> <mml:semantics> <mml:mi>w</mml:mi> <mml:annotation encoding=\"application/x-tex\">w</mml:annotation> </mml:semantics> </mml:math> </inline-formula> primitive, then our main result is that the inclusion <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M Subscript w Baseline left-parenthesis upper S comma upper H right-parenthesis right-arrow upper M Subscript v Baseline left-parenthesis upper S comma upper H right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>w</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo>,</mml:mo> <mml:mi>H</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">→</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>v</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo>,</mml:mo> <mml:mi>H</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">M_w(S,H)to M_v(S,H)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as the most singular locus induces an isomorphism between the monodromy groups of these symplectic varieties, allowing us to extend to the non-primitive case ","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the failure of Ornstein theory in the finitary category","authors":"Uri Gabor","doi":"10.1090/tran/8776","DOIUrl":"https://doi.org/10.1090/tran/8776","url":null,"abstract":"<p>We show the invalidity of finitary counterparts for three classification theorems: The preservation of being a Bernoulli shift through factors, Sinai’s factor theorem, and the weak Pinsker property. We construct a finitary factor of an i.i.d. process which is not finitarily isomorphic to an i.i.d. process, showing that being finitarily Bernoulli is not preserved through finitary factors. This refutes a conjecture of M. Smorodinsky [<italic>Finitary isomorphism of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dependent processes</italic>, Amer. Math. Soc., Birkhauser, Providence, RI, 1992, pp. 373–376], which was first suggested by D. Rudolph [<italic>A characterization of those processes finitarily isomorphic to a Bernoulli shift</italic>, Birkhäuser, Boston, Mass., 1981, pp. 1–64]. We further show that any ergodic system is isomorphic to a process none of whose finitary factors are i.i.d. processes, and in particular, there is no general finitary Sinai’s factor theorem for ergodic processes. Another consequence of this result is the invalidity of a finitary weak Pinsker property, answering a question of G. Pete and T. Austin [Math. Inst. Hautes Études Sci. 128 (2018), 1–119].</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}