等变乳胶基

IF 1.2 2区 数学 Q1 MATHEMATICS
Dinh Le, Tim Römer
{"title":"等变乳胶基","authors":"Dinh Le, Tim Römer","doi":"10.1090/tran/9193","DOIUrl":null,"url":null,"abstract":"<p>We study lattices in free abelian groups of infinite rank that are invariant under the action of the infinite symmetric group, with emphasis on finiteness of their equivariant bases. Our framework provides a new method for proving finiteness results in algebraic statistics. As an illustration, we show that every invariant lattice in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Superscript left-parenthesis double-struck upper N times left-bracket c right-bracket right-parenthesis\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> <mml:mo>×</mml:mo> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mi>c</mml:mi> <mml:mo stretchy=\"false\">]</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}^{(\\mathbb {N}\\times [c])}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c element-of double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">c\\in \\mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, has a finite equivariant Graver basis. This result generalizes and strengthens several finiteness results about Markov bases in the literature.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant lattice bases\",\"authors\":\"Dinh Le, Tim Römer\",\"doi\":\"10.1090/tran/9193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study lattices in free abelian groups of infinite rank that are invariant under the action of the infinite symmetric group, with emphasis on finiteness of their equivariant bases. Our framework provides a new method for proving finiteness results in algebraic statistics. As an illustration, we show that every invariant lattice in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z Superscript left-parenthesis double-struck upper N times left-bracket c right-bracket right-parenthesis\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi> </mml:mrow> <mml:mo>×</mml:mo> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mi>c</mml:mi> <mml:mo stretchy=\\\"false\\\">]</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Z}^{(\\\\mathbb {N}\\\\times [c])}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"c element-of double-struck upper N\\\"> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">c\\\\in \\\\mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, has a finite equivariant Graver basis. This result generalizes and strengthens several finiteness results about Markov bases in the literature.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9193\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9193","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究在无限对称群作用下不变的无限秩自由无边群中的网格,重点是其等变基的有限性。我们的框架为证明代数统计中的有限性结果提供了一种新方法。举例来说,我们证明了 Z ( N × [ c ] ) 中的每一个不变网格都是\mathbb {Z}^{(\mathbb {N}\times [c])} 。 其中 c ∈ N c\in \mathbb {N}, 有一个有限等变格雷弗基。这一结果概括并加强了文献中关于马尔可夫基的几个有限性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivariant lattice bases

We study lattices in free abelian groups of infinite rank that are invariant under the action of the infinite symmetric group, with emphasis on finiteness of their equivariant bases. Our framework provides a new method for proving finiteness results in algebraic statistics. As an illustration, we show that every invariant lattice in Z ( N × [ c ] ) \mathbb {Z}^{(\mathbb {N}\times [c])} , where c N c\in \mathbb {N} , has a finite equivariant Graver basis. This result generalizes and strengthens several finiteness results about Markov bases in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信