{"title":"Variation of stability for moduli spaces of unordered points in the plane","authors":"Patricio Gallardo, Benjamin Schmidt","doi":"10.1090/tran/9030","DOIUrl":"https://doi.org/10.1090/tran/9030","url":null,"abstract":"We study compactifications of the moduli space of unordered points in the plane via variation of GIT-quotients of their corresponding Hilbert scheme. Our VGIT considers linearizations outside the ample cone and within the movable cone. For that purpose, we use the description of the Hilbert scheme as a Mori dream space, and the moduli interpretation of its birational models via Bridgeland stability. We determine the GIT walls associated with curvilinear zero-dimensional schemes, collinear points, and schemes supported on a smooth conic. For seven points, we study a compactification associated with an extremal ray of the movable cone, where stability behaves very differently from the Chow quotient. Lastly, a complete description for five points is given.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135666994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maps between relatively hyperbolic spaces and between their boundaries","authors":"John M. Mackay, Alessandro Sisto","doi":"10.1090/tran/9063","DOIUrl":"https://doi.org/10.1090/tran/9063","url":null,"abstract":"We study relations between maps between relatively hyperbolic groups/spaces and quasisymmetric embeddings between their boundaries. More specifically, we establish a correspondence between (not necessarily coarsely surjective) quasi-isometric embeddings between relatively hyperbolic groups/spaces that coarsely respect peripherals, and quasisymmetric embeddings between their boundaries satisfying suitable conditions. Further, we establish a similar correspondence regarding maps with at most polynomial distortion. We use this to characterise groups which are hyperbolic relative to some collection of virtually nilpotent subgroups as exactly those groups which admit an embedding into a truncated real hyperbolic space with at most polynomial distortion, generalising a result of Bonk and Schramm for hyperbolic groups.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135666549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Density-constrained chemotaxis and Hele-Shaw flow","authors":"Inwon Kim, Antoine Mellet, Yijing Wu","doi":"10.1090/tran/8934","DOIUrl":"https://doi.org/10.1090/tran/8934","url":null,"abstract":"We consider a model of congestion dynamics with chemotaxis, where the density of cells follows the chemical signal it generates, while observing an incompressibility constraint (incompressible parabolic-elliptic Patlak-Keller-Segel model). We show that when the chemical diffuses slowly and attracts the cells strongly, then the dynamics of the congested cells is well approximated by a surface-tension driven free boundary problem. More precisely, we rigorously establish the convergence of the solution to the characteristic function of a set whose evolution is determined by the classical Hele-Shaw free boundary problem with surface tension. The problem is set in a bounded domain, which leads to an interesting analysis on the limiting boundary conditions. Namely, we prove that the assumption of Robin boundary conditions for the chemical potential leads to a contact angle condition for the free interface (in particular Neumann boundary conditions lead to an orthogonal contact angle condition, while Dirichlet boundary conditions lead to a tangential contact angle condition).","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135667251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandru Aleman, Karl-Mikael Perfekt, Stefan Richter, Carl Sundberg, James Sunkes
{"title":"Cyclicity in the Drury-Arveson space and other weighted Besov spaces","authors":"Alexandru Aleman, Karl-Mikael Perfekt, Stefan Richter, Carl Sundberg, James Sunkes","doi":"10.1090/tran/9060","DOIUrl":"https://doi.org/10.1090/tran/9060","url":null,"abstract":"","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135887922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Orthonormal bases arising from nilpotent actions","authors":"Vignon Oussa","doi":"10.1090/tran/9042","DOIUrl":"https://doi.org/10.1090/tran/9042","url":null,"abstract":"In this paper, we prove the existence of an orthonormal basis in at least one orbit of every generic irreducible representation of a simply connected and connected nilpotent Lie group. Our result has a wide-ranging impact, encompassing all irreducible representations of a nilpotent Lie group that are square-integrable modulo its center. This resolves a fundamental open problem in time-frequency analysis and frame theory, originally posed by Karlheinz Gröchenig. The implications of our findings are significant and far-reaching.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136057939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global behavior of small data solutions for the 2D Dirac-Klein-Gordon system","authors":"Shijie Dong, Kuijie Li, Yue Ma, Xu Yuan","doi":"10.1090/tran/9011","DOIUrl":"https://doi.org/10.1090/tran/9011","url":null,"abstract":"In this paper, we are interested in the two-dimensional Dirac–Klein-Gordon system, which is a basic model in particle physics. We investigate the global behavior of small data solutions to this system in the case of a massive scalar field and a massless Dirac field. More precisely, our main result is twofold: (1) we show sharp time decay for the pointwise estimates of the solutions, which implies the asymptotic stability of this system; (2) we show the linear scattering result of this system which is a fundamental problem when it is viewed as dispersive equations. Our result is valid for general small, high-regular initial data, and in particular, there is no restriction on the support of the initial data.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136058097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crossed homomorphisms and low dimensional representations of mapping class groups of surfaces","authors":"Yasushi Kasahara","doi":"10.1090/tran/9037","DOIUrl":"https://doi.org/10.1090/tran/9037","url":null,"abstract":"We continue the study of low dimensional linear representations of mapping class groups of surfaces initiated by Franks–Handel [Proc. Amer. Math. So. 141 (2013), pp. 2951–2962] and Korkmaz [<italic>Low-dimensional linear representations of mapping class groups</italic>, preprint, arXiv:1104.4816v2 (2011)]. We consider <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 2 g plus 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>2</mml:mn> <mml:mi>g</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(2g+1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional complex linear representations of the pure mapping class groups of compact orientable surfaces of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\"application/x-tex\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We give a complete classification of such representations for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g greater-than-or-equal-to 7\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>7</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">g geq 7</mml:annotation> </mml:semantics> </mml:math> </inline-formula> up to conjugation, in terms of certain twisted <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\"application/x-tex\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cohomology groups of the mapping class groups. A new ingredient is to use the computation of a related twisted <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\"application/x-tex\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cohomology group by Morita [Ann. Inst. Fourier (Grenoble) 39 (1989), pp. 777–810]. The classification result implies in particular that there are no irreducible linear representations of dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 g plus 1\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>g</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2g+1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g greater-than-or-equal-to 7\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136057935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hyperbolic manifolds with a large number of systoles","authors":"Cayo Dória, Emanoel Freire, Plinio Murillo","doi":"10.1090/tran/9049","DOIUrl":"https://doi.org/10.1090/tran/9049","url":null,"abstract":"In this article, for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 4\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">ngeq 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we construct a sequence of compact hyperbolic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifolds <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace upper M Subscript i Baseline right-brace\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{M_i}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with number of systoles at least as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal v normal o normal l left-parenthesis upper M Subscript i Baseline right-parenthesis Superscript 1 plus StartFraction 1 Over 3 n left-parenthesis n plus 1 right-parenthesis EndFraction minus epsilon\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">v</mml:mi> <mml:mi mathvariant=\"normal\">o</mml:mi> <mml:mi mathvariant=\"normal\">l</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:mn>3</mml:mn> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mi>ϵ<!-- ϵ --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathrm {vol}(M_i)^{1+frac {1}{3n(n+1)}-epsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">epsilon >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In dimension 3, the bound is improved to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal v normal o normal l left-parenthe","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136057941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of 𝑝-energy and associated energy measures on Sierpiński carpets","authors":"Ryosuke Shimizu","doi":"10.1090/tran/9036","DOIUrl":"https://doi.org/10.1090/tran/9036","url":null,"abstract":"We establish the existence of a scaling limit <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper E Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">E</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">mathcal {E}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of discrete <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-energies on the graphs approximating a generalized Sierpiński carpet for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than d Subscript normal upper A normal upper R normal upper C\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:msub> <mml:mi>d</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">A</mml:mi> <mml:mi mathvariant=\"normal\">R</mml:mi> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p > d_{mathrm {ARC}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d Subscript normal upper A normal upper R normal upper C\"> <mml:semantics> <mml:msub> <mml:mi>d</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">A</mml:mi> <mml:mi mathvariant=\"normal\">R</mml:mi> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">d_{mathrm {ARC}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Ahlfors regular conformal dimension of the underlying generalized Sierpiński carpet. Furthermore, the function space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper F Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">F</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">mathcal {F}_{p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> defined as the collection of functions with finite <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-energies is shown to be a re","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136057936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}