{"title":"平面上无序点模空间的稳定性变化","authors":"Patricio Gallardo, Benjamin Schmidt","doi":"10.1090/tran/9030","DOIUrl":null,"url":null,"abstract":"We study compactifications of the moduli space of unordered points in the plane via variation of GIT-quotients of their corresponding Hilbert scheme. Our VGIT considers linearizations outside the ample cone and within the movable cone. For that purpose, we use the description of the Hilbert scheme as a Mori dream space, and the moduli interpretation of its birational models via Bridgeland stability. We determine the GIT walls associated with curvilinear zero-dimensional schemes, collinear points, and schemes supported on a smooth conic. For seven points, we study a compactification associated with an extremal ray of the movable cone, where stability behaves very differently from the Chow quotient. Lastly, a complete description for five points is given.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"21 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Variation of stability for moduli spaces of unordered points in the plane\",\"authors\":\"Patricio Gallardo, Benjamin Schmidt\",\"doi\":\"10.1090/tran/9030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study compactifications of the moduli space of unordered points in the plane via variation of GIT-quotients of their corresponding Hilbert scheme. Our VGIT considers linearizations outside the ample cone and within the movable cone. For that purpose, we use the description of the Hilbert scheme as a Mori dream space, and the moduli interpretation of its birational models via Bridgeland stability. We determine the GIT walls associated with curvilinear zero-dimensional schemes, collinear points, and schemes supported on a smooth conic. For seven points, we study a compactification associated with an extremal ray of the movable cone, where stability behaves very differently from the Chow quotient. Lastly, a complete description for five points is given.\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9030\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/9030","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Variation of stability for moduli spaces of unordered points in the plane
We study compactifications of the moduli space of unordered points in the plane via variation of GIT-quotients of their corresponding Hilbert scheme. Our VGIT considers linearizations outside the ample cone and within the movable cone. For that purpose, we use the description of the Hilbert scheme as a Mori dream space, and the moduli interpretation of its birational models via Bridgeland stability. We determine the GIT walls associated with curvilinear zero-dimensional schemes, collinear points, and schemes supported on a smooth conic. For seven points, we study a compactification associated with an extremal ray of the movable cone, where stability behaves very differently from the Chow quotient. Lastly, a complete description for five points is given.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.