{"title":"曲面映射类群的交叉同态和低维表示","authors":"Yasushi Kasahara","doi":"10.1090/tran/9037","DOIUrl":null,"url":null,"abstract":"We continue the study of low dimensional linear representations of mapping class groups of surfaces initiated by Franks–Handel [Proc. Amer. Math. So. 141 (2013), pp. 2951–2962] and Korkmaz [<italic>Low-dimensional linear representations of mapping class groups</italic>, preprint, arXiv:1104.4816v2 (2011)]. We consider <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 2 g plus 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>2</mml:mn> <mml:mi>g</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(2g+1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional complex linear representations of the pure mapping class groups of compact orientable surfaces of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\"application/x-tex\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We give a complete classification of such representations for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g greater-than-or-equal-to 7\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>7</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">g \\geq 7</mml:annotation> </mml:semantics> </mml:math> </inline-formula> up to conjugation, in terms of certain twisted <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\"application/x-tex\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cohomology groups of the mapping class groups. A new ingredient is to use the computation of a related twisted <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\"application/x-tex\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cohomology group by Morita [Ann. Inst. Fourier (Grenoble) 39 (1989), pp. 777–810]. The classification result implies in particular that there are no irreducible linear representations of dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 g plus 1\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>g</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2g+1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g greater-than-or-equal-to 7\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>7</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">g \\geq 7</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which marks a contrast with the case <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g equals 2\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">g=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"28 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crossed homomorphisms and low dimensional representations of mapping class groups of surfaces\",\"authors\":\"Yasushi Kasahara\",\"doi\":\"10.1090/tran/9037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue the study of low dimensional linear representations of mapping class groups of surfaces initiated by Franks–Handel [Proc. Amer. Math. So. 141 (2013), pp. 2951–2962] and Korkmaz [<italic>Low-dimensional linear representations of mapping class groups</italic>, preprint, arXiv:1104.4816v2 (2011)]. We consider <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis 2 g plus 1 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>2</mml:mn> <mml:mi>g</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(2g+1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional complex linear representations of the pure mapping class groups of compact orientable surfaces of genus <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We give a complete classification of such representations for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g greater-than-or-equal-to 7\\\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>7</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">g \\\\geq 7</mml:annotation> </mml:semantics> </mml:math> </inline-formula> up to conjugation, in terms of certain twisted <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1\\\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cohomology groups of the mapping class groups. A new ingredient is to use the computation of a related twisted <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1\\\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cohomology group by Morita [Ann. Inst. Fourier (Grenoble) 39 (1989), pp. 777–810]. The classification result implies in particular that there are no irreducible linear representations of dimension <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 g plus 1\\\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>g</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">2g+1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g greater-than-or-equal-to 7\\\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>7</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">g \\\\geq 7</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which marks a contrast with the case <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g equals 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">g=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9037\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/9037","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们继续研究由Franks-Handel发起的曲面映射类群的低维线性表示[Proc. Amer]。数学。So. 141 (2013), pp. 2951-2962]和Korkmaz[映射类群的低维线性表示,预印本,arXiv:1104.4816v2(2011)]。考虑g属紧定向曲面纯映射类群的(2g+1) (2g+1)维复线性表示。我们给出了g≥7 g \geq 7直到共轭的这类表示的完全分类,它是由映射类群的某些扭曲11 -上同调群构成的。一种新的方法是利用Morita [Ann]对相关的扭曲11 -上同调群的计算。傅立叶研究所(格勒诺布尔)39 (1989),pp. 777-810]。分类结果特别表明,当g≥7 g \geq 7时,不存在2g+1 g+1 g的不可约线性表示,这与g=2 g=2的情况形成了对比。
Crossed homomorphisms and low dimensional representations of mapping class groups of surfaces
We continue the study of low dimensional linear representations of mapping class groups of surfaces initiated by Franks–Handel [Proc. Amer. Math. So. 141 (2013), pp. 2951–2962] and Korkmaz [Low-dimensional linear representations of mapping class groups, preprint, arXiv:1104.4816v2 (2011)]. We consider (2g+1)(2g+1)-dimensional complex linear representations of the pure mapping class groups of compact orientable surfaces of genus gg. We give a complete classification of such representations for g≥7g \geq 7 up to conjugation, in terms of certain twisted 11-cohomology groups of the mapping class groups. A new ingredient is to use the computation of a related twisted 11-cohomology group by Morita [Ann. Inst. Fourier (Grenoble) 39 (1989), pp. 777–810]. The classification result implies in particular that there are no irreducible linear representations of dimension 2g+12g+1 for g≥7g \geq 7, which marks a contrast with the case g=2g=2.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.