{"title":"相对双曲空间之间的地图及其边界之间的地图","authors":"John M. Mackay, Alessandro Sisto","doi":"10.1090/tran/9063","DOIUrl":null,"url":null,"abstract":"We study relations between maps between relatively hyperbolic groups/spaces and quasisymmetric embeddings between their boundaries. More specifically, we establish a correspondence between (not necessarily coarsely surjective) quasi-isometric embeddings between relatively hyperbolic groups/spaces that coarsely respect peripherals, and quasisymmetric embeddings between their boundaries satisfying suitable conditions. Further, we establish a similar correspondence regarding maps with at most polynomial distortion. We use this to characterise groups which are hyperbolic relative to some collection of virtually nilpotent subgroups as exactly those groups which admit an embedding into a truncated real hyperbolic space with at most polynomial distortion, generalising a result of Bonk and Schramm for hyperbolic groups.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maps between relatively hyperbolic spaces and between their boundaries\",\"authors\":\"John M. Mackay, Alessandro Sisto\",\"doi\":\"10.1090/tran/9063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study relations between maps between relatively hyperbolic groups/spaces and quasisymmetric embeddings between their boundaries. More specifically, we establish a correspondence between (not necessarily coarsely surjective) quasi-isometric embeddings between relatively hyperbolic groups/spaces that coarsely respect peripherals, and quasisymmetric embeddings between their boundaries satisfying suitable conditions. Further, we establish a similar correspondence regarding maps with at most polynomial distortion. We use this to characterise groups which are hyperbolic relative to some collection of virtually nilpotent subgroups as exactly those groups which admit an embedding into a truncated real hyperbolic space with at most polynomial distortion, generalising a result of Bonk and Schramm for hyperbolic groups.\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9063\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/9063","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Maps between relatively hyperbolic spaces and between their boundaries
We study relations between maps between relatively hyperbolic groups/spaces and quasisymmetric embeddings between their boundaries. More specifically, we establish a correspondence between (not necessarily coarsely surjective) quasi-isometric embeddings between relatively hyperbolic groups/spaces that coarsely respect peripherals, and quasisymmetric embeddings between their boundaries satisfying suitable conditions. Further, we establish a similar correspondence regarding maps with at most polynomial distortion. We use this to characterise groups which are hyperbolic relative to some collection of virtually nilpotent subgroups as exactly those groups which admit an embedding into a truncated real hyperbolic space with at most polynomial distortion, generalising a result of Bonk and Schramm for hyperbolic groups.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.