艾森布-后藤猜想的曲面反例

IF 1.2 2区 数学 Q1 MATHEMATICS
Jong In Han, Sijong Kwak
{"title":"艾森布-后藤猜想的曲面反例","authors":"Jong In Han, Sijong Kwak","doi":"10.1090/tran/9192","DOIUrl":null,"url":null,"abstract":"<p>It is well known that the Eisenbud-Goto regularity conjecture is true for arithmetically Cohen-Macaulay varieties, projective curves, smooth surfaces, smooth threefolds in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 5\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>5</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^5</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and toric varieties of codimension two. After J. McCullough and I. Peeva constructed counterexamples in 2018, it has been an interesting question to find the categories such that the Eisenbud-Goto conjecture holds. So far, surface counterexamples have not been found while counterexamples of any dimension greater or equal to 3 are known.</p> <p>In this paper, we construct counterexamples to the Eisenbud-Goto conjecture for projective surfaces in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 4\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>4</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and investigate projective invariants, cohomological properties, and geometric properties. The counterexamples are constructed via binomial rational maps between projective spaces.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface counterexamples to the Eisenbud-Goto conjecture\",\"authors\":\"Jong In Han, Sijong Kwak\",\"doi\":\"10.1090/tran/9192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is well known that the Eisenbud-Goto regularity conjecture is true for arithmetically Cohen-Macaulay varieties, projective curves, smooth surfaces, smooth threefolds in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P Superscript 5\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mn>5</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {P}^5</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and toric varieties of codimension two. After J. McCullough and I. Peeva constructed counterexamples in 2018, it has been an interesting question to find the categories such that the Eisenbud-Goto conjecture holds. So far, surface counterexamples have not been found while counterexamples of any dimension greater or equal to 3 are known.</p> <p>In this paper, we construct counterexamples to the Eisenbud-Goto conjecture for projective surfaces in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P Superscript 4\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mn>4</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {P}^4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and investigate projective invariants, cohomological properties, and geometric properties. The counterexamples are constructed via binomial rational maps between projective spaces.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9192\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9192","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,艾森布德-戈托正则猜想对于算术上的科恩-麦考莱(Cohen-Macaulay)变体、投影曲线、光滑曲面、P 5 \mathbb {P}^5 中的光滑三褶,以及标度为二的环状变体都是成立的。在 J. McCullough 和 I. Peeva 于 2018 年构造出反例之后,如何找到艾森布德-后藤猜想成立的范畴一直是一个有趣的问题。迄今为止,尚未发现曲面反例,而已知任何维度大于或等于3的反例。在本文中,我们为 P 4 \mathbb {P}^4 中的投影面构造了艾森布德-后藤猜想的反例,并研究了投影不变式、同调性质和几何性质。反例是通过投影空间之间的二项式有理映射构造的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface counterexamples to the Eisenbud-Goto conjecture

It is well known that the Eisenbud-Goto regularity conjecture is true for arithmetically Cohen-Macaulay varieties, projective curves, smooth surfaces, smooth threefolds in P 5 \mathbb {P}^5 , and toric varieties of codimension two. After J. McCullough and I. Peeva constructed counterexamples in 2018, it has been an interesting question to find the categories such that the Eisenbud-Goto conjecture holds. So far, surface counterexamples have not been found while counterexamples of any dimension greater or equal to 3 are known.

In this paper, we construct counterexamples to the Eisenbud-Goto conjecture for projective surfaces in P 4 \mathbb {P}^4 and investigate projective invariants, cohomological properties, and geometric properties. The counterexamples are constructed via binomial rational maps between projective spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信