分离几乎线性大小的路径系统

IF 1.2 2区 数学 Q1 MATHEMATICS
Shoham Letzter
{"title":"分离几乎线性大小的路径系统","authors":"Shoham Letzter","doi":"10.1090/tran/9187","DOIUrl":null,"url":null,"abstract":"<p>A <italic>separating path system</italic> for a graph <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a collection <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">P</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {P}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of paths in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that for every two edges <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"e\"> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding=\"application/x-tex\">e</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there is a path in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">P</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {P}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that contains <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"e\"> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding=\"application/x-tex\">e</mml:annotation> </mml:semantics> </mml:math> </inline-formula> but not <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that every <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-vertex graph has a separating path system of size <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis n log Superscript asterisk Baseline n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:msup> <mml:mi>log</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mo>⁡</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(n \\log ^* n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This improves upon the previous best upper bound of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis n log n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mi>log</mml:mi> <mml:mo>⁡</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(n \\log n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and makes progress towards a conjecture of Falgas-Ravry–Kittipassorn–Korándi–Letzter–Narayanan and Balogh–Csaba–Martin–Pluhár, according to which an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bound should hold.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separating path systems of almost linear size\",\"authors\":\"Shoham Letzter\",\"doi\":\"10.1090/tran/9187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <italic>separating path system</italic> for a graph <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a collection <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper P\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">P</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {P}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of paths in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that for every two edges <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"e\\\"> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">e</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f\\\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there is a path in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper P\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">P</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {P}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that contains <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"e\\\"> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">e</mml:annotation> </mml:semantics> </mml:math> </inline-formula> but not <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f\\\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that every <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-vertex graph has a separating path system of size <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis n log Superscript asterisk Baseline n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:msup> <mml:mi>log</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mo>⁡</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(n \\\\log ^* n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This improves upon the previous best upper bound of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis n log n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mi>log</mml:mi> <mml:mo>⁡</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(n \\\\log n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and makes progress towards a conjecture of Falgas-Ravry–Kittipassorn–Korándi–Letzter–Narayanan and Balogh–Csaba–Martin–Pluhár, according to which an <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bound should hold.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9187\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9187","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图 G 的分离路径系统是图 G 中路径 P \mathcal {P} 的集合,对于每两条边 e e 和 f f,P \mathcal {P} 中都有一条路径包含 e e 而不包含 f f。我们证明,每个 n 个顶点图都有一个大小为 O ( n log ∗ n ) O(n \log ^* n) 的分离路径系统。这改进了之前的最佳上界 O ( n log n ) O(n \log n) ,并在实现 Falgas-Ravry-Kittipassorn-Korándi-Letzter-Narayanan 和 Balogh-Csaba-Martin-Pluhár 的猜想方面取得了进展,根据该猜想,O ( n ) O(n) 界应该成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separating path systems of almost linear size

A separating path system for a graph G G is a collection P \mathcal {P} of paths in G G such that for every two edges e e and f f , there is a path in P \mathcal {P} that contains e e but not f f . We show that every n n -vertex graph has a separating path system of size O ( n log n ) O(n \log ^* n) . This improves upon the previous best upper bound of O ( n log n ) O(n \log n) , and makes progress towards a conjecture of Falgas-Ravry–Kittipassorn–Korándi–Letzter–Narayanan and Balogh–Csaba–Martin–Pluhár, according to which an O ( n ) O(n) bound should hold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信