{"title":"Soap bubbles and convex cones: optimal quantitative rigidity","authors":"Giorgio Poggesi","doi":"10.1090/tran/9207","DOIUrl":null,"url":null,"abstract":"<p>We consider a class of recent rigidity results in a convex cone <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Sigma subset-of-or-equal-to double-struck upper R Superscript upper N\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Σ</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Sigma \\subseteq \\mathbb {R}^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These include overdetermined Serrin-type problems for a mixed boundary value problem relative to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Sigma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Σ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, Alexandrov’s soap bubble-type results relative to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Sigma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Σ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and Heintze-Karcher’s inequality relative to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Sigma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Σ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Each rigidity result is obtained here by means of a single integral identity and holds true under weak integral overdeterminations in possibly non-smooth cones. Optimal quantitative stability estimates are obtained in terms of an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-pseudodistance. In particular, the optimal stability estimate for Heintze-Karcher’s inequality is new even in the classical case <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Sigma equals double-struck upper R Superscript upper N\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Σ</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Sigma = \\mathbb {R}^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p> <p>Stability bounds in terms of the Hausdorff distance are also provided.</p> <p>Several new results are established and exploited, including a new Poincaré-type inequality for vector fields whose normal components vanish on a portion of the boundary and an explicit (possibly weighted) trace theory – relative to the cone <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Sigma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Σ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> – for harmonic functions satisfying a homogeneous Neumann condition on the portion of the boundary contained in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential normal upper Sigma\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">∂</mml:mi> <mml:mi mathvariant=\"normal\">Σ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\partial \\Sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p> <p>We also introduce new notions of uniform interior and exterior sphere conditions relative to the cone <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Sigma subset-of-or-equal-to double-struck upper R Superscript upper N\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Σ</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Sigma \\subseteq \\mathbb {R}^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which allow to obtain (via barrier arguments) uniform lower and upper bounds for the gradient in the mixed boundary value-setting. In the particular case <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Sigma equals double-struck upper R Superscript upper N\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Σ</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Sigma =\\mathbb {R}^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, these conditions return the classical uniform interior and exterior sphere conditions (together with the associated classical gradient bounds of the Dirichlet setting).</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"49 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9207","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a class of recent rigidity results in a convex cone Σ⊆RN\Sigma \subseteq \mathbb {R}^N. These include overdetermined Serrin-type problems for a mixed boundary value problem relative to Σ\Sigma, Alexandrov’s soap bubble-type results relative to Σ\Sigma, and Heintze-Karcher’s inequality relative to Σ\Sigma. Each rigidity result is obtained here by means of a single integral identity and holds true under weak integral overdeterminations in possibly non-smooth cones. Optimal quantitative stability estimates are obtained in terms of an L2L^2-pseudodistance. In particular, the optimal stability estimate for Heintze-Karcher’s inequality is new even in the classical case Σ=RN\Sigma = \mathbb {R}^N.
Stability bounds in terms of the Hausdorff distance are also provided.
Several new results are established and exploited, including a new Poincaré-type inequality for vector fields whose normal components vanish on a portion of the boundary and an explicit (possibly weighted) trace theory – relative to the cone Σ\Sigma – for harmonic functions satisfying a homogeneous Neumann condition on the portion of the boundary contained in ∂Σ\partial \Sigma.
We also introduce new notions of uniform interior and exterior sphere conditions relative to the cone Σ⊆RN\Sigma \subseteq \mathbb {R}^N, which allow to obtain (via barrier arguments) uniform lower and upper bounds for the gradient in the mixed boundary value-setting. In the particular case Σ=RN\Sigma =\mathbb {R}^N, these conditions return the classical uniform interior and exterior sphere conditions (together with the associated classical gradient bounds of the Dirichlet setting).
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.