求助PDF
{"title":"色长一变形环","authors":"Daniel Le, Bao Le Hung, Stefano Morra, Chol Park, Zicheng Qian","doi":"10.1090/tran/9191","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K slash double-struck upper Q Subscript p\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">K/\\mathbb {Q}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finite unramified extension, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar colon normal upper G normal a normal l left-parenthesis double-struck upper Q overbar Subscript p Baseline slash upper K right-parenthesis right-arrow normal upper G normal upper L Subscript n Baseline left-parenthesis double-struck upper F overbar Subscript p Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mo>:</mml:mo> <mml:mrow> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">a</mml:mi> <mml:mi mathvariant=\"normal\">l</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">→</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }:\\mathrm {Gal}(\\overline {\\mathbb {Q}}_p/K)\\rightarrow \\mathrm {GL}_n(\\overline {\\mathbb {F}}_p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a continuous representation, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a tame inertial type of dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We explicitly determine, under mild regularity conditions on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the potentially crystalline deformation ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R Subscript rho overbar Superscript eta comma tau\"> <mml:semantics> <mml:msubsup> <mml:mi>R</mml:mi> <mml:mrow> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">R^{\\eta ,\\tau }_{\\overline {\\rho }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in parallel Hodge–Tate weights <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"eta equals left-parenthesis n minus 1 comma midline-horizontal-ellipsis comma 1 comma 0 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\eta =(n-1,\\cdots ,1,0)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and inertial type <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when the <italic>shape</italic> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho overbar\"> <mml:semantics> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\"false\">¯</mml:mo> </mml:mover> <mml:annotation encoding=\"application/x-tex\">\\overline {\\rho }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has colength at most one. This has application to the modularity of a class of shadow weights in the weight part of Serre’s conjecture. Along the way we make unconditional the local-global compatibility results of Park and Qian [Mém. Soc. Math. Fr. (N.S.) 173 (2022), pp. vi+150].</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colength one deformation rings\",\"authors\":\"Daniel Le, Bao Le Hung, Stefano Morra, Chol Park, Zicheng Qian\",\"doi\":\"10.1090/tran/9191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K slash double-struck upper Q Subscript p\\\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">K/\\\\mathbb {Q}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finite unramified extension, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"rho overbar colon normal upper G normal a normal l left-parenthesis double-struck upper Q overbar Subscript p Baseline slash upper K right-parenthesis right-arrow normal upper G normal upper L Subscript n Baseline left-parenthesis double-struck upper F overbar Subscript p Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\\\"false\\\">¯</mml:mo> </mml:mover> <mml:mo>:</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">G</mml:mi> <mml:mi mathvariant=\\\"normal\\\">a</mml:mi> <mml:mi mathvariant=\\\"normal\\\">l</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> <mml:mo accent=\\\"false\\\">¯</mml:mo> </mml:mover> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">→</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">G</mml:mi> <mml:mi mathvariant=\\\"normal\\\">L</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mover> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">F</mml:mi> </mml:mrow> <mml:mo accent=\\\"false\\\">¯</mml:mo> </mml:mover> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\overline {\\\\rho }:\\\\mathrm {Gal}(\\\\overline {\\\\mathbb {Q}}_p/K)\\\\rightarrow \\\\mathrm {GL}_n(\\\\overline {\\\\mathbb {F}}_p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a continuous representation, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau\\\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a tame inertial type of dimension <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We explicitly determine, under mild regularity conditions on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau\\\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the potentially crystalline deformation ring <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R Subscript rho overbar Superscript eta comma tau\\\"> <mml:semantics> <mml:msubsup> <mml:mi>R</mml:mi> <mml:mrow> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\\\"false\\\">¯</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">R^{\\\\eta ,\\\\tau }_{\\\\overline {\\\\rho }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in parallel Hodge–Tate weights <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"eta equals left-parenthesis n minus 1 comma midline-horizontal-ellipsis comma 1 comma 0 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\eta =(n-1,\\\\cdots ,1,0)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and inertial type <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau\\\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when the <italic>shape</italic> of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"rho overbar\\\"> <mml:semantics> <mml:mover> <mml:mi>ρ</mml:mi> <mml:mo accent=\\\"false\\\">¯</mml:mo> </mml:mover> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\overline {\\\\rho }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau\\\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has colength at most one. This has application to the modularity of a class of shadow weights in the weight part of Serre’s conjecture. Along the way we make unconditional the local-global compatibility results of Park and Qian [Mém. Soc. Math. Fr. (N.S.) 173 (2022), pp. vi+150].</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9191\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9191","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用