A compact extension of Journé’s 𝑇1 theorem on product spaces

IF 1.2 2区 数学 Q1 MATHEMATICS
Mingming Cao, Kôzô Yabuta, Dachun Yang
{"title":"A compact extension of Journé’s 𝑇1 theorem on product spaces","authors":"Mingming Cao, Kôzô Yabuta, Dachun Yang","doi":"10.1090/tran/9206","DOIUrl":null,"url":null,"abstract":"<p>We prove a compact version of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Baseline 1\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> theorem for bi-parameter singular integrals. That is, if a bi-parameter singular integral operator <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\"application/x-tex\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> admits the compact full and partial kernel representations, and satisfies the weak compactness property, the diagonal <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C upper M upper O\"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>M</mml:mi> <mml:mi>O</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">CMO</mml:annotation> </mml:semantics> </mml:math> </inline-formula> condition, and the product <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C upper M upper O\"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>M</mml:mi> <mml:mi>O</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">CMO</mml:annotation> </mml:semantics> </mml:math> </inline-formula> condition, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\"application/x-tex\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be extended to a compact operator on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p Baseline left-parenthesis w right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>w</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^p(w)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 greater-than p greater-than normal infinity\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1&gt;p&gt;\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"w element-of upper A Subscript p Baseline left-parenthesis double-struck upper R Superscript n 1 Baseline times double-struck upper R Superscript n 2 Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>w</mml:mi> <mml:mo>∈</mml:mo> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mi>n</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> </mml:msup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">w \\in A_p(\\mathbb {R}^{n_1} \\times \\mathbb {R}^{n_2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Even in the unweighted setting, it is the first time to give a compact extension of Journé’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Baseline 1\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> theorem on product spaces.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9206","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a compact version of the T 1 T1 theorem for bi-parameter singular integrals. That is, if a bi-parameter singular integral operator T T admits the compact full and partial kernel representations, and satisfies the weak compactness property, the diagonal C M O CMO condition, and the product C M O CMO condition, then T T can be extended to a compact operator on L p ( w ) L^p(w) for all 1 > p > 1>p>\infty and w A p ( R n 1 × R n 2 ) w \in A_p(\mathbb {R}^{n_1} \times \mathbb {R}^{n_2}) . Even in the unweighted setting, it is the first time to give a compact extension of Journé’s T 1 T1 theorem on product spaces.

积空间上儒尔内 𝑇1 定理的紧凑扩展
我们证明了双参数奇异积分 T 1 T1 定理的紧凑版本。也就是说,如果双参数奇异积分算子 T T 承认紧凑的全核和偏核表示,并且满足弱紧凑性、对角线 C M O CMO 条件和积 C M O CMO 条件,那么 T T 可以扩展为 L p ( w ) L^p(w) 上的紧凑算子,对于所有 1 >;p > ∞ 1>p>\infty 且 w∈ A p ( R n 1 × R n 2 ) w \in A_p(\mathbb {R}^{n_1} \times\mathbb {R}^{n_2}) .即使在无权设置中,这也是第一次给出儒尔内 T 1 T1 定理在积空间上的紧凑扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信