共轭双曲子群

IF 1.2 2区 数学 Q1 MATHEMATICS
Nir Lazarovich, Alex Margolis, Mahan Mj
{"title":"共轭双曲子群","authors":"Nir Lazarovich, Alex Margolis, Mahan Mj","doi":"10.1090/tran/9209","DOIUrl":null,"url":null,"abstract":"<p>We show that if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a non-elementary hyperbolic commensurated subgroup of infinite index in a hyperbolic group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is virtually a free product of hyperbolic surface groups and free groups. We prove that whenever a one-ended hyperbolic group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a fiber of a non-trivial hyperbolic bundle then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> virtually splits over a 2-ended subgroup.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commensurated hyperbolic subgroups\",\"authors\":\"Nir Lazarovich, Alex Margolis, Mahan Mj\",\"doi\":\"10.1090/tran/9209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a non-elementary hyperbolic commensurated subgroup of infinite index in a hyperbolic group <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is virtually a free product of hyperbolic surface groups and free groups. We prove that whenever a one-ended hyperbolic group <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a fiber of a non-trivial hyperbolic bundle then <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> virtually splits over a 2-ended subgroup.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9209\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9209","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果 H H 是双曲群 G G 中一个无穷索引的非元素双曲共轭子群,那么 H H 实际上是双曲曲面群和自由群的自由积。我们证明,只要单端双曲群 H H 是非三端双曲束的纤维,那么 H H 实际上就分裂于一个二端子群之上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commensurated hyperbolic subgroups

We show that if H H is a non-elementary hyperbolic commensurated subgroup of infinite index in a hyperbolic group G G , then H H is virtually a free product of hyperbolic surface groups and free groups. We prove that whenever a one-ended hyperbolic group H H is a fiber of a non-trivial hyperbolic bundle then H H virtually splits over a 2-ended subgroup.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信