{"title":"Separating path systems of almost linear size","authors":"Shoham Letzter","doi":"10.1090/tran/9187","DOIUrl":null,"url":null,"abstract":"<p>A <italic>separating path system</italic> for a graph <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a collection <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">P</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {P}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of paths in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that for every two edges <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"e\"> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding=\"application/x-tex\">e</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there is a path in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">P</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {P}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that contains <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"e\"> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding=\"application/x-tex\">e</mml:annotation> </mml:semantics> </mml:math> </inline-formula> but not <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that every <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-vertex graph has a separating path system of size <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis n log Superscript asterisk Baseline n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:msup> <mml:mi>log</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mo></mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(n \\log ^* n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This improves upon the previous best upper bound of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis n log n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mi>log</mml:mi> <mml:mo></mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(n \\log n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and makes progress towards a conjecture of Falgas-Ravry–Kittipassorn–Korándi–Letzter–Narayanan and Balogh–Csaba–Martin–Pluhár, according to which an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bound should hold.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"39 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9187","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A separating path system for a graph GG is a collection P\mathcal {P} of paths in GG such that for every two edges ee and ff, there is a path in P\mathcal {P} that contains ee but not ff. We show that every nn-vertex graph has a separating path system of size O(nlog∗n)O(n \log ^* n). This improves upon the previous best upper bound of O(nlogn)O(n \log n), and makes progress towards a conjecture of Falgas-Ravry–Kittipassorn–Korándi–Letzter–Narayanan and Balogh–Csaba–Martin–Pluhár, according to which an O(n)O(n) bound should hold.
图 G 的分离路径系统是图 G 中路径 P \mathcal {P} 的集合,对于每两条边 e e 和 f f,P \mathcal {P} 中都有一条路径包含 e e 而不包含 f f。我们证明,每个 n 个顶点图都有一个大小为 O ( n log ∗ n ) O(n \log ^* n) 的分离路径系统。这改进了之前的最佳上界 O ( n log n ) O(n \log n) ,并在实现 Falgas-Ravry-Kittipassorn-Korándi-Letzter-Narayanan 和 Balogh-Csaba-Martin-Pluhár 的猜想方面取得了进展,根据该猜想,O ( n ) O(n) 界应该成立。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.