{"title":"关于艾哈德不等式的猜想对称版本","authors":"Galyna Livshyts","doi":"10.1090/tran/9177","DOIUrl":null,"url":null,"abstract":"<p>We formulate a plausible conjecture for the optimal Ehrhard-type inequality for convex symmetric sets with respect to the Gaussian measure. Namely, letting <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper J Subscript k minus 1 Baseline left-parenthesis s right-parenthesis equals integral Subscript 0 Superscript s Baseline t Superscript k minus 1 Baseline e Superscript minus StartFraction t squared Over 2 EndFraction Baseline d t\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>J</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mo>∫</mml:mo> <mml:mn>0</mml:mn> <mml:mi>s</mml:mi> </mml:msubsup> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mfrac> <mml:msup> <mml:mi>t</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> </mml:msup> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">J_{k-1}(s)=\\int ^s_0 t^{k-1} e^{-\\frac {t^2}{2}}dt</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c Subscript k minus 1 Baseline equals upper J Subscript k minus 1 Baseline left-parenthesis plus normal infinity right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>c</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>J</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">c_{k-1}=J_{k-1}(+\\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we conjecture that the function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F colon left-bracket 0 comma 1 right-bracket right-arrow double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>:</mml:mo> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">F:[0,1]\\rightarrow \\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, given by <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F left-parenthesis a right-parenthesis equals sigma-summation Underscript k equals 1 Overscript n Endscripts 1 Subscript a element-of upper E Sub Subscript k Baseline dot left-parenthesis beta Subscript k Baseline upper J Subscript k minus 1 Superscript negative 1 Baseline left-parenthesis c Subscript k minus 1 Baseline a right-parenthesis plus alpha Subscript k Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:munderover> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:munderover> <mml:msub> <mml:mn>1</mml:mn> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>∈</mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:mo>⋅</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:msubsup> <mml:mi>J</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>c</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} F(a)= \\sum _{k=1}^n 1_{a\\in E_k}\\cdot (\\beta _k J_{k-1}^{-1}(c_{k-1} a)+\\alpha _k) \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> (with an appropriate choice of a decomposition <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma 1 right-bracket equals union upper E Subscript i\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mo>∪</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> </mml:mrow> </mml:msub> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">[0,1]=\\cup _{i} E_i</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and coefficients <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha Subscript i Baseline comma beta Subscript i Baseline\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha _i, \\beta _i</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) satisfies, for all symmetric convex sets <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda element-of left-bracket 0 comma 1 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>∈</mml:mo> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\lambda \\in [0,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F left-parenthesis gamma left-parenthesis lamda upper K plus left-parenthesis 1 minus lamda right-parenthesis upper L right-parenthesis right-parenthesis greater-than-or-equal-to lamda upper F left-parenthesis gamma left-parenthesis upper K right-parenthesis right-parenthesis plus left-parenthesis 1 minus lamda right-parenthesis upper F left-parenthesis gamma left-parenthesis upper L right-parenthesis right-parenthesis period\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>K</mml:mi> <mml:mo>+</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−</mml:mo> <mml:mi>λ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>≥</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>F</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−</mml:mo> <mml:mi>λ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>F</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} F\\left (\\gamma (\\lambda K+(1-\\lambda )L)\\right )\\geq \\lambda F\\left (\\gamma (K)\\right )+(1-\\lambda ) F\\left (\\gamma (L)\\right ). \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> We explain that this conjecture is “the most optimistic possible”, and is equivalent to the fact that for any symmetric convex set <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, its <italic>Gaussian concavity power</italic> <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Subscript s Baseline left-parenthesis upper K comma gamma right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p_s(K,\\gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is greater than or equal to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Subscript s Baseline left-parenthesis upper R upper B 2 Superscript k Baseline times double-struck upper R Superscript n minus k Baseline comma gamma right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>R</mml:mi> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p_s(RB^k_2\\times \\mathbb {R}^{n-k},\\gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for some <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k element-of StartSet 1 comma ellipsis comma n EndSet\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k\\in \\{1,\\dots ,n\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We call the sets <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R upper B 2 Superscript k times double-struck upper R Superscript n minus k\"> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">RB^k_2\\times \\mathbb {R}^{n-k}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <italic>round <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cylinders</italic>; they also appear as the conjectured Gaussian isoperimetric minimizers for symmetric sets, see Heilman [Amer. J. Math. 143 (2021), pp. 53–94].</p> <p>In this manuscript, we make progress towards this question, and show that for any symmetric convex set <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Subscript s Baseline left-parenthesis upper K comma gamma right-parenthesis greater-than-or-equal-to sup Underscript upper F element-of upper L squared left-parenthesis upper K comma gamma right-parenthesis intersection upper L i p left-parenthesis upper K right-parenthesis colon integral upper F equals 1 Endscripts left-parenthesis 2 upper T Subscript gamma Superscript upper F Baseline left-parenthesis upper K right-parenthesis minus upper V a r left-parenthesis upper F right-parenthesis right-parenthesis plus StartFraction 1 Over n minus double-struck upper E upper X squared EndFraction comma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>≥</mml:mo> <mml:munder> <mml:mo movablelimits=\"true\" form=\"prefix\">sup</mml:mo> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∩</mml:mo> <mml:mi>L</mml:mi> <mml:mi>i</mml:mi> <mml:mi>p</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>:</mml:mo> <mml:mspace width=\"thinmathspace\"/> <mml:mo>∫</mml:mo> <mml:mi>F</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:munder> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>2</mml:mn> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mrow> <mml:mi>γ</mml:mi> </mml:mrow> <mml:mi>F</mml:mi> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> <mml:mi>a</mml:mi> <mml:mi>r</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">E</mml:mi> </mml:mrow> <mml:msup> <mml:mi>X</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mfrac> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} p_s(K,\\gamma )\\geq \\sup _{F\\in L^2(K,\\gamma )\\cap Lip(K):\\,\\int F=1} \\left (2T_{\\gamma }^F(K)-Var(F)\\right )+\\frac {1}{n-\\mathbb {E}X^2}, \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Subscript gamma Superscript upper F Baseline left-parenthesis upper K right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mrow> <mml:mi>γ</mml:mi> </mml:mrow> <mml:mi>F</mml:mi> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T_{\\gamma }^F(K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F minus\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>−</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">F-</mml:annotation> </mml:semantics> </mml:math> </inline-formula>torsional rigidity of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to the Gaussian measure. <italic>Moreover, the equality holds if and only if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K equals upper R upper B 2 Superscript k Baseline times double-struck upper R Superscript n minus k\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>R</mml:mi> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">K=RB^k_2\\times \\mathbb {R}^{n-k}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for some <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">R>0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k equals 1 comma ellipsis comma n\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k=1,\\dots ,n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</italic> As a consequence, we get <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Subscript s Baseline left-parenthesis upper K comma gamma right-parenthesis greater-than-or-equal-to upper Q left-parenthesis double-struck upper E StartAbsoluteValue upper X EndAbsoluteValue squared comma double-struck upper E double-vertical-bar upper X double-vertical-bar Subscript upper K Superscript 4 Baseline comma double-struck upper E double-vertical-bar upper X double-vertical-bar Subscript upper K Superscript 2 Baseline comma r left-parenthesis upper K right-parenthesis right-parenthesis comma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>≥</mml:mo> <mml:mi>Q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">E</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>X</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">E</mml:mi> </mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mi>X</mml:mi> <mml:msubsup> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mi>K</mml:mi> <mml:mn>4</mml:mn> </mml:msubsup> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">E</mml:mi> </mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mi>X</mml:mi> <mml:msubsup> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mi>K</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> <mml:mo>,</mml:mo> <mml:mi>r</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} p_s(K,\\gamma )\\geq Q(\\mathbb {E}|X|^2, \\mathbb {E}\\|X\\|_K^4, \\mathbb {E}\\|X\\|^2_K, r(K)), \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a certain rational function of degree <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\"application/x-tex\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the expectation is taken with respect to the restriction of the Gaussian measure onto <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-vertical-bar dot double-vertical-bar Subscript upper K\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mo>⋅</mml:mo> <mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mi>K</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\|\\cdot \\|_K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Minkowski functional of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r left-parenthesis upper K right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">r(K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the in-radius of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The result follows via a combination of some novel estimates, the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Baseline 2\"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> method (previously studied by several authors, notably Kolesnikov and Milman [J. Geom. Anal. 27 (2017), pp. 1680–1702; Amer. J. Math. 140 (2018), pp. 1147–1185; <italic>Geometric aspects of functional analysis</italic>, Springer, Cham, 2017; Mem. Amer. Math. Soc. 277 (2022), v+78 pp.], Kolesnikov and the author [Adv. Math. 384 (2021), 23 pp.], Hosle, Kolesnikov, and the author [J. Geom. Anal. 31 (2021), pp. 5799–5836], Colesanti [Commun. Contemp. Math. 10 (2008), pp. 765–772], Colesanti, the author, and Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139], Eskenazis and Moschidis [J. Funct. Anal. 280 (2021), 19 pp.]), and the analysis of the Gaussian torsional rigidity.</p> <p>As an auxiliary result on the way to the equality case characterization, we characterize the equality cases in the “convex set version” of the Brascamp-Lieb inequality, and moreover, obtain a quantitative stability version in the case of the standard Gaussian measure; this may be of independent interest. All the equality case characterizations rely on the careful analysis of the smooth case, the stability versions via trace theory, and local approximation arguments.</p> <p>In addition, we provide a non-sharp estimate for a function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=\"application/x-tex\">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose composition with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"gamma left-parenthesis upper K right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\gamma (K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is concave in the Minkowski sense for all symmetric convex sets.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"47 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a conjectural symmetric version of Ehrhard’s inequality\",\"authors\":\"Galyna Livshyts\",\"doi\":\"10.1090/tran/9177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We formulate a plausible conjecture for the optimal Ehrhard-type inequality for convex symmetric sets with respect to the Gaussian measure. Namely, letting <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper J Subscript k minus 1 Baseline left-parenthesis s right-parenthesis equals integral Subscript 0 Superscript s Baseline t Superscript k minus 1 Baseline e Superscript minus StartFraction t squared Over 2 EndFraction Baseline d t\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>J</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mo>∫</mml:mo> <mml:mn>0</mml:mn> <mml:mi>s</mml:mi> </mml:msubsup> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mfrac> <mml:msup> <mml:mi>t</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> </mml:msup> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">J_{k-1}(s)=\\\\int ^s_0 t^{k-1} e^{-\\\\frac {t^2}{2}}dt</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"c Subscript k minus 1 Baseline equals upper J Subscript k minus 1 Baseline left-parenthesis plus normal infinity right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>c</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>J</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">c_{k-1}=J_{k-1}(+\\\\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we conjecture that the function <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F colon left-bracket 0 comma 1 right-bracket right-arrow double-struck upper R\\\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>:</mml:mo> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> <mml:mo stretchy=\\\"false\\\">→</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">F:[0,1]\\\\rightarrow \\\\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, given by <disp-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F left-parenthesis a right-parenthesis equals sigma-summation Underscript k equals 1 Overscript n Endscripts 1 Subscript a element-of upper E Sub Subscript k Baseline dot left-parenthesis beta Subscript k Baseline upper J Subscript k minus 1 Superscript negative 1 Baseline left-parenthesis c Subscript k minus 1 Baseline a right-parenthesis plus alpha Subscript k Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:munderover> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:munderover> <mml:msub> <mml:mn>1</mml:mn> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>∈</mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:mo>⋅</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:msubsup> <mml:mi>J</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>c</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mi>a</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} F(a)= \\\\sum _{k=1}^n 1_{a\\\\in E_k}\\\\cdot (\\\\beta _k J_{k-1}^{-1}(c_{k-1} a)+\\\\alpha _k) \\\\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> (with an appropriate choice of a decomposition <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket 0 comma 1 right-bracket equals union upper E Subscript i\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mo>∪</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> </mml:mrow> </mml:msub> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">[0,1]=\\\\cup _{i} E_i</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and coefficients <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha Subscript i Baseline comma beta Subscript i Baseline\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha _i, \\\\beta _i</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) satisfies, for all symmetric convex sets <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and any <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda element-of left-bracket 0 comma 1 right-bracket\\\"> <mml:semantics> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>∈</mml:mo> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda \\\\in [0,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <disp-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F left-parenthesis gamma left-parenthesis lamda upper K plus left-parenthesis 1 minus lamda right-parenthesis upper L right-parenthesis right-parenthesis greater-than-or-equal-to lamda upper F left-parenthesis gamma left-parenthesis upper K right-parenthesis right-parenthesis plus left-parenthesis 1 minus lamda right-parenthesis upper F left-parenthesis gamma left-parenthesis upper L right-parenthesis right-parenthesis period\\\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>K</mml:mi> <mml:mo>+</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−</mml:mo> <mml:mi>λ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>≥</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>F</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−</mml:mo> <mml:mi>λ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>F</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} F\\\\left (\\\\gamma (\\\\lambda K+(1-\\\\lambda )L)\\\\right )\\\\geq \\\\lambda F\\\\left (\\\\gamma (K)\\\\right )+(1-\\\\lambda ) F\\\\left (\\\\gamma (L)\\\\right ). \\\\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> We explain that this conjecture is “the most optimistic possible”, and is equivalent to the fact that for any symmetric convex set <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, its <italic>Gaussian concavity power</italic> <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p Subscript s Baseline left-parenthesis upper K comma gamma right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p_s(K,\\\\gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is greater than or equal to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p Subscript s Baseline left-parenthesis upper R upper B 2 Superscript k Baseline times double-struck upper R Superscript n minus k Baseline comma gamma right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>R</mml:mi> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p_s(RB^k_2\\\\times \\\\mathbb {R}^{n-k},\\\\gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for some <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k element-of StartSet 1 comma ellipsis comma n EndSet\\\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">k\\\\in \\\\{1,\\\\dots ,n\\\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We call the sets <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R upper B 2 Superscript k times double-struck upper R Superscript n minus k\\\"> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">RB^k_2\\\\times \\\\mathbb {R}^{n-k}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <italic>round <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cylinders</italic>; they also appear as the conjectured Gaussian isoperimetric minimizers for symmetric sets, see Heilman [Amer. J. Math. 143 (2021), pp. 53–94].</p> <p>In this manuscript, we make progress towards this question, and show that for any symmetric convex set <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R Superscript n\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <disp-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p Subscript s Baseline left-parenthesis upper K comma gamma right-parenthesis greater-than-or-equal-to sup Underscript upper F element-of upper L squared left-parenthesis upper K comma gamma right-parenthesis intersection upper L i p left-parenthesis upper K right-parenthesis colon integral upper F equals 1 Endscripts left-parenthesis 2 upper T Subscript gamma Superscript upper F Baseline left-parenthesis upper K right-parenthesis minus upper V a r left-parenthesis upper F right-parenthesis right-parenthesis plus StartFraction 1 Over n minus double-struck upper E upper X squared EndFraction comma\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>≥</mml:mo> <mml:munder> <mml:mo movablelimits=\\\"true\\\" form=\\\"prefix\\\">sup</mml:mo> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>∩</mml:mo> <mml:mi>L</mml:mi> <mml:mi>i</mml:mi> <mml:mi>p</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>:</mml:mo> <mml:mspace width=\\\"thinmathspace\\\"/> <mml:mo>∫</mml:mo> <mml:mi>F</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:munder> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>2</mml:mn> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mrow> <mml:mi>γ</mml:mi> </mml:mrow> <mml:mi>F</mml:mi> </mml:msubsup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> <mml:mi>a</mml:mi> <mml:mi>r</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">E</mml:mi> </mml:mrow> <mml:msup> <mml:mi>X</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mfrac> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} p_s(K,\\\\gamma )\\\\geq \\\\sup _{F\\\\in L^2(K,\\\\gamma )\\\\cap Lip(K):\\\\,\\\\int F=1} \\\\left (2T_{\\\\gamma }^F(K)-Var(F)\\\\right )+\\\\frac {1}{n-\\\\mathbb {E}X^2}, \\\\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T Subscript gamma Superscript upper F Baseline left-parenthesis upper K right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mrow> <mml:mi>γ</mml:mi> </mml:mrow> <mml:mi>F</mml:mi> </mml:msubsup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">T_{\\\\gamma }^F(K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F minus\\\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>−</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">F-</mml:annotation> </mml:semantics> </mml:math> </inline-formula>torsional rigidity of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to the Gaussian measure. <italic>Moreover, the equality holds if and only if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K equals upper R upper B 2 Superscript k Baseline times double-struck upper R Superscript n minus k\\\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>R</mml:mi> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">K=RB^k_2\\\\times \\\\mathbb {R}^{n-k}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for some <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R greater-than 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">R>0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k equals 1 comma ellipsis comma n\\\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">k=1,\\\\dots ,n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</italic> As a consequence, we get <disp-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p Subscript s Baseline left-parenthesis upper K comma gamma right-parenthesis greater-than-or-equal-to upper Q left-parenthesis double-struck upper E StartAbsoluteValue upper X EndAbsoluteValue squared comma double-struck upper E double-vertical-bar upper X double-vertical-bar Subscript upper K Superscript 4 Baseline comma double-struck upper E double-vertical-bar upper X double-vertical-bar Subscript upper K Superscript 2 Baseline comma r left-parenthesis upper K right-parenthesis right-parenthesis comma\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>≥</mml:mo> <mml:mi>Q</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">E</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>X</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">E</mml:mi> </mml:mrow> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖</mml:mo> <mml:mi>X</mml:mi> <mml:msubsup> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖</mml:mo> <mml:mi>K</mml:mi> <mml:mn>4</mml:mn> </mml:msubsup> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">E</mml:mi> </mml:mrow> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖</mml:mo> <mml:mi>X</mml:mi> <mml:msubsup> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖</mml:mo> <mml:mi>K</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> <mml:mo>,</mml:mo> <mml:mi>r</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} p_s(K,\\\\gamma )\\\\geq Q(\\\\mathbb {E}|X|^2, \\\\mathbb {E}\\\\|X\\\\|_K^4, \\\\mathbb {E}\\\\|X\\\\|^2_K, r(K)), \\\\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Q\\\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a certain rational function of degree <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the expectation is taken with respect to the restriction of the Gaussian measure onto <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-vertical-bar dot double-vertical-bar Subscript upper K\\\"> <mml:semantics> <mml:mrow> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖</mml:mo> <mml:mo>⋅</mml:mo> <mml:msub> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖</mml:mo> <mml:mi>K</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\|\\\\cdot \\\\|_K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Minkowski functional of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"r left-parenthesis upper K right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">r(K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the in-radius of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The result follows via a combination of some novel estimates, the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Baseline 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">L2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> method (previously studied by several authors, notably Kolesnikov and Milman [J. Geom. Anal. 27 (2017), pp. 1680–1702; Amer. J. Math. 140 (2018), pp. 1147–1185; <italic>Geometric aspects of functional analysis</italic>, Springer, Cham, 2017; Mem. Amer. Math. Soc. 277 (2022), v+78 pp.], Kolesnikov and the author [Adv. Math. 384 (2021), 23 pp.], Hosle, Kolesnikov, and the author [J. Geom. Anal. 31 (2021), pp. 5799–5836], Colesanti [Commun. Contemp. Math. 10 (2008), pp. 765–772], Colesanti, the author, and Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139], Eskenazis and Moschidis [J. Funct. Anal. 280 (2021), 19 pp.]), and the analysis of the Gaussian torsional rigidity.</p> <p>As an auxiliary result on the way to the equality case characterization, we characterize the equality cases in the “convex set version” of the Brascamp-Lieb inequality, and moreover, obtain a quantitative stability version in the case of the standard Gaussian measure; this may be of independent interest. All the equality case characterizations rely on the careful analysis of the smooth case, the stability versions via trace theory, and local approximation arguments.</p> <p>In addition, we provide a non-sharp estimate for a function <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose composition with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"gamma left-parenthesis upper K right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\gamma (K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is concave in the Minkowski sense for all symmetric convex sets.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9177\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9177","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们为凸对称集关于高斯度量的最优艾哈德型不等式提出了一个似是而非的猜想。即,设 J k - 1 ( s ) = ∫ 0 s t k - 1 e - t 2 2 d t J_{k-1}(s)=\int ^s_0 t^{k-1} e^{-\frac {t^2}{2}}dt 和 c k - 1 = J k - 1 ( + ∞ ) c_{k-1}=J_{k-1}(+\infty ) ,我们猜想函数 F :[ 0 , 1 ] → R F:[0 , 1]\rightarrow \mathbb {R} , 给定 F ( a ) = ∑ k = 1 n 1 a∈ E k ⋅ ( β k J k - 1 - 1 ( c k - 1 a ) + α k ) \开始F(a)= \sum _{k=1}^n 1_{a\in E_k}\cdot (\beta _k J_{k-1}^{-1}(c_{k-1} a)+\alpha _k) \end{equation*} (适当选择分解 [ 0 , 1 ] =∪ i E i [0,1]=\cup _{i}E_i 和系数 α i , β i \alpha _i, \beta _i )满足,对于所有对称凸集 K K 和 L L ,以及任意 λ ∈ [ 0 , 1 ] \lambda \in [0 , 1] , F ( γ ( λ K + ( 1 - λ ) L ) ) ≥ λ F ( γ ( K ) ) + ( 1 - λ ) F ( γ ( L ) ) . \开始Fleft (\gamma (λ)K+(1-\lambda)L)\right)geq\lambda Fleft (\gamma (K)\right)+(1-\lambda ) Fleft (\gamma (L)\right ).\end{equation*} 我们解释说,这个猜想是 "最乐观的猜想",它等同于这样一个事实:对于任何对称凸集 K K,它的高斯凹幂 p s ( K , γ ) p_s(K,\gamma ) 大于或等于 p s ( R B 2 k × R n - k , γ ) p_s(RB^k_2\times \mathbb {R}^{n-k},\gamma ) ,对于某个 k∈ { 1 , ... , n } k\in \mathbb {R}^{n-k}, \gamma ) 。, n } k\in \{1,\dots ,n\} 。我们称这些集合为 R B 2 k × R n - k RB^k_2\times \mathbb {R}^{n-k} round k -cylinders;它们也作为对称集合的猜想高斯等周最小值出现,参见 Heilman [Amer. J. Math. 143 (2021), pp.]在本手稿中,我们在这一问题上取得了进展,证明了对于 R n \mathbb {R}^n 中的任意对称凸集 K K , p s ( K , γ ) ≥ sup F∈ L 2 ( K , γ ) ∩ L i p ( K ) : ∫ F = 1 ( 2 T γ F ( K ) - V a r ( F ) ) + 1 n - E X 2 , \begin{equation*} p_s(K,\gamma )\geq \sup _{F\in L^2(K,\gamma )\cap Lip(K):\,\int F=1}\left (2T_{\gamma }^F(K)-Var(F)\right )+\frac {1}{n-\mathbb {E}X^2}, \end{equation*} 其中 T γ F ( K ) T_{\gamma }^F(K) 是 K K 相对于高斯度量的 F - F- 扭转刚度。此外,当且仅当 K = R B 2 k × R n - k K=RB^k_2\times \mathbb {R}^{n-k} 为某个 R > 0 R>0 且 k = 1 , ... , n k=1,\dots ,n 时,相等成立。因此,我们可以得到 p s ( K , γ ) ≥ Q ( E | X | 2 , E ‖ X ‖ K 4 , E ‖ X ‖ K 2 , r ( K ) ) , \begin{等式., \begin{equation*} p_s(K,\gamma )\geq Q(\mathbb {E}|X|^2, \mathbb {E}\|X\|_K^4, \mathbb {E}\|X\|^2_K, r(K)), \end{equation*} 其中 Q Q 是一个度数为 2 2 的有理函数、期望取自高斯度量对 K K 的限制,‖⋅‖K \|\cdot \|_K是 K K 的明考斯基函数,r ( K ) r(K) 是 K K 的内半径。这一结果是通过一些新的估计、L 2 L2 方法(之前有多位学者,特别是 Kolesnikov 和 Milman [J. Geom.Geom.Anal.27 (2017), pp.J. Math.140 (2018), pp. 1147-1185; Geometric aspects of functional analysis, Springer, Cham, 2017; Mem. Amer.Math.Soc. 277 (2022), v+78 pp.], Kolesnikov and the author [Adv. Math. 384 (2021), 23 pp.], Hosle, Kolesnikov, and the author [J. Geom. Anal. 31 (2021), pp.765-772], Colesanti, the author, and Marsiglietti [J. Funct. Anal. 273 (2017), pp.作为等值情况表征过程中的一个辅助结果,我们表征了布拉斯坎普-李布不等式的 "凸集版本 "中的等值情况,此外,我们还得到了标准高斯度量情况下的定量稳定性版本;这可能是一个独立的兴趣点。所有相等情况的表征都依赖于对光滑情况的仔细分析、通过迹理论得到的稳定性版本以及局部近似论证。此外,我们还为函数 F F 提供了非尖锐估计,对于所有对称凸集,函数 F F 与 γ ( K ) \gamma (K) 的组合在闵科夫斯基意义上是凹的。
On a conjectural symmetric version of Ehrhard’s inequality
We formulate a plausible conjecture for the optimal Ehrhard-type inequality for convex symmetric sets with respect to the Gaussian measure. Namely, letting Jk−1(s)=∫0stk−1e−t22dtJ_{k-1}(s)=\int ^s_0 t^{k-1} e^{-\frac {t^2}{2}}dt and ck−1=Jk−1(+∞)c_{k-1}=J_{k-1}(+\infty ), we conjecture that the function F:[0,1]→RF:[0,1]\rightarrow \mathbb {R}, given by F(a)=∑k=1n1a∈Ek⋅(βkJk−1−1(ck−1a)+αk)\begin{equation*} F(a)= \sum _{k=1}^n 1_{a\in E_k}\cdot (\beta _k J_{k-1}^{-1}(c_{k-1} a)+\alpha _k) \end{equation*} (with an appropriate choice of a decomposition [0,1]=∪iEi[0,1]=\cup _{i} E_i and coefficients αi,βi\alpha _i, \beta _i) satisfies, for all symmetric convex sets KK and LL, and any λ∈[0,1]\lambda \in [0,1], F(γ(λK+(1−λ)L))≥λF(γ(K))+(1−λ)F(γ(L)).\begin{equation*} F\left (\gamma (\lambda K+(1-\lambda )L)\right )\geq \lambda F\left (\gamma (K)\right )+(1-\lambda ) F\left (\gamma (L)\right ). \end{equation*} We explain that this conjecture is “the most optimistic possible”, and is equivalent to the fact that for any symmetric convex set KK, its Gaussian concavity powerps(K,γ)p_s(K,\gamma ) is greater than or equal to ps(RB2k×Rn−k,γ)p_s(RB^k_2\times \mathbb {R}^{n-k},\gamma ), for some k∈{1,…,n}k\in \{1,\dots ,n\}. We call the sets RB2k×Rn−kRB^k_2\times \mathbb {R}^{n-k}round kk-cylinders; they also appear as the conjectured Gaussian isoperimetric minimizers for symmetric sets, see Heilman [Amer. J. Math. 143 (2021), pp. 53–94].
In this manuscript, we make progress towards this question, and show that for any symmetric convex set KK in Rn\mathbb {R}^n, ps(K,γ)≥supF∈L2(K,γ)∩Lip(K):∫F=1(2TγF(K)−Var(F))+1n−EX2,\begin{equation*} p_s(K,\gamma )\geq \sup _{F\in L^2(K,\gamma )\cap Lip(K):\,\int F=1} \left (2T_{\gamma }^F(K)-Var(F)\right )+\frac {1}{n-\mathbb {E}X^2}, \end{equation*} where TγF(K)T_{\gamma }^F(K) is the F−F-torsional rigidity of KK with respect to the Gaussian measure. Moreover, the equality holds if and only if K=RB2k×Rn−kK=RB^k_2\times \mathbb {R}^{n-k} for some R>0R>0 and k=1,…,nk=1,\dots ,n. As a consequence, we get ps(K,γ)≥Q(E|X|2,E‖X‖K4,E‖X‖K2,r(K)),\begin{equation*} p_s(K,\gamma )\geq Q(\mathbb {E}|X|^2, \mathbb {E}\|X\|_K^4, \mathbb {E}\|X\|^2_K, r(K)), \end{equation*} where QQ is a certain rational function of degree 22, the expectation is taken with respect to the restriction of the Gaussian measure onto KK, ‖⋅‖K\|\cdot \|_K is the Minkowski functional of KK, and r(K)r(K) is the in-radius of KK. The result follows via a combination of some novel estimates, the L2L2 method (previously studied by several authors, notably Kolesnikov and Milman [J. Geom. Anal. 27 (2017), pp. 1680–1702; Amer. J. Math. 140 (2018), pp. 1147–1185; Geometric aspects of functional analysis, Springer, Cham, 2017; Mem. Amer. Math. Soc. 277 (2022), v+78 pp.], Kolesnikov and the author [Adv. Math. 384 (2021), 23 pp.], Hosle, Kolesnikov, and the author [J. Geom. Anal. 31 (2021), pp. 5799–5836], Colesanti [Commun. Contemp. Math. 10 (2008), pp. 765–772], Colesanti, the author, and Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139], Eskenazis and Moschidis [J. Funct. Anal. 280 (2021), 19 pp.]), and the analysis of the Gaussian torsional rigidity.
As an auxiliary result on the way to the equality case characterization, we characterize the equality cases in the “convex set version” of the Brascamp-Lieb inequality, and moreover, obtain a quantitative stability version in the case of the standard Gaussian measure; this may be of independent interest. All the equality case characterizations rely on the careful analysis of the smooth case, the stability versions via trace theory, and local approximation arguments.
In addition, we provide a non-sharp estimate for a function FF whose composition with γ(K)\gamma (K) is concave in the Minkowski sense for all symmetric convex sets.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.