Ela Celikbas, Emilie Dufresne, Louiza Fouli, Elisa Gorla, Kuei-Nuan Lin, Claudia Polini, Irena Swanson
{"title":"稀疏行列式理想的里斯代数","authors":"Ela Celikbas, Emilie Dufresne, Louiza Fouli, Elisa Gorla, Kuei-Nuan Lin, Claudia Polini, Irena Swanson","doi":"10.1090/tran/9101","DOIUrl":null,"url":null,"abstract":"<p>We determine the defining equations of the Rees algebra and of the special fiber ring of the ideal of maximal minors of a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 times n\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2\\times n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> sparse matrix. We prove that their initial algebras are ladder determinantal rings. This allows us to show that the Rees algebra and the special fiber ring are Cohen-Macaulay domains, they are Koszul, they have rational singularities in characteristic zero and are F-rational in positive characteristic.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rees algebras of sparse determinantal ideals\",\"authors\":\"Ela Celikbas, Emilie Dufresne, Louiza Fouli, Elisa Gorla, Kuei-Nuan Lin, Claudia Polini, Irena Swanson\",\"doi\":\"10.1090/tran/9101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We determine the defining equations of the Rees algebra and of the special fiber ring of the ideal of maximal minors of a <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 times n\\\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">2\\\\times n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> sparse matrix. We prove that their initial algebras are ladder determinantal rings. This allows us to show that the Rees algebra and the special fiber ring are Cohen-Macaulay domains, they are Koszul, they have rational singularities in characteristic zero and are F-rational in positive characteristic.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9101\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9101","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们确定了里斯代数和 2 × n 2\times n 稀疏矩阵的最大小数理想的特殊纤维环的定义方程。我们证明它们的初始代数是梯形行列式环。这使我们能够证明里斯代数和特殊纤维环是科恩-麦考莱域,它们是科斯祖尔域,它们在零特征中具有有理奇点,并且在正特征中是 F 有理的。
We determine the defining equations of the Rees algebra and of the special fiber ring of the ideal of maximal minors of a 2×n2\times n sparse matrix. We prove that their initial algebras are ladder determinantal rings. This allows us to show that the Rees algebra and the special fiber ring are Cohen-Macaulay domains, they are Koszul, they have rational singularities in characteristic zero and are F-rational in positive characteristic.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.