Transactions of the American Mathematical Society最新文献

筛选
英文 中文
3-2-1 foliations for Reeb flows on the tight 3-sphere 紧密三球面上里布流的 3-2-1 叶形
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-17 DOI: 10.1090/tran/9119
Carolina de Oliveira
{"title":"3-2-1 foliations for Reeb flows on the tight 3-sphere","authors":"Carolina de Oliveira","doi":"10.1090/tran/9119","DOIUrl":"https://doi.org/10.1090/tran/9119","url":null,"abstract":"<p>We study the existence of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 minus 2 minus 1\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3-2-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> foliations adapted to Reeb flows on the tight <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-sphere. These foliations admit precisely three binding orbits whose Conley-Zehnder indices are <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\"application/x-tex\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\"application/x-tex\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively. All regular leaves are disks and annuli asymptotic to the binding orbits. Our main results provide sufficient conditions for the existence of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 minus 2 minus 1\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3-2-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> foliations with prescribed binding orbits. We also exhibit a concrete Hamiltonian on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript 4\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>4</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {R}^4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> admitting <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 minus 2 minus 1\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3-2-1</","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"7 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ratios conjecture for real Dirichlet characters and multiple Dirichlet series 实狄利克特字符和多重狄利克特数列的比率猜想
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-03 DOI: 10.1090/tran/9113
Martin Čech
{"title":"The ratios conjecture for real Dirichlet characters and multiple Dirichlet series","authors":"Martin Čech","doi":"10.1090/tran/9113","DOIUrl":"https://doi.org/10.1090/tran/9113","url":null,"abstract":"<p>Conrey, Farmer and Zirnbauer introduced a recipe to find asymptotic formulas for the sum of ratios of products of shifted L-functions. These ratios conjectures are very powerful and can be used to determine many statistics of L-functions, including moments or statistics about the distribution of zeros.</p> <p>We consider the family of real Dirichlet characters, and use multiple Dirichlet series to prove the ratios conjectures with one shift in the numerator and denominator in some range of the shifts. This range can be improved by extending the family to include non-primitive characters. All of the results are conditional under the Generalized Riemann hypothesis.</p> <p>This extended range is good enough to enable us to compute an asymptotic formula for the sum of shifted logarithmic derivatives near the critical line. As an application, we compute the one-level density for test functions whose Fourier transform is supported in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative 2 comma 2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">left (-2,2right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, including lower-order terms.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"24 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BPS invariants of symplectic log Calabi-Yau fourfolds 对称对数 Calabi-Yau 四围的 BPS 不变量
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-03 DOI: 10.1090/tran/9114
Mohammad Farajzadeh-Tehrani
{"title":"BPS invariants of symplectic log Calabi-Yau fourfolds","authors":"Mohammad Farajzadeh-Tehrani","doi":"10.1090/tran/9114","DOIUrl":"https://doi.org/10.1090/tran/9114","url":null,"abstract":"<p>Using the Fredholm setup of Farajzadeh-Tehrani [Peking Math. J. (2023), https://doi.org/10.1007/s42543-023-00069-1], we study genus zero (and higher) relative Gromov-Witten invariants with maximum tangency of symplectic log Calabi-Yau fourfolds. In particular, we give a short proof of Gross [Duke Math. J. 153 (2010), pp. 297–362, Cnj. 6.2] that expresses these invariants in terms of certain integral invariants by considering generic almost complex structures to obtain a geometric count. We also revisit the localization calculation of the multiple-cover contributions in Gross [Prp. 6.1] and recalculate a few terms differently to provide more details and illustrate the computation of deformation/obstruction spaces for maps that have components in a destabilizing (or rubber) component of the target. Finally, we study a higher genus version of these invariants and explain a decomposition of genus one invariants into different contributions.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"111 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the constant of Lipschitz approximability 关于 Lipschitz 近似性常数
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-03 DOI: 10.1090/tran/9110
Rubén Medina
{"title":"On the constant of Lipschitz approximability","authors":"Rubén Medina","doi":"10.1090/tran/9110","DOIUrl":"https://doi.org/10.1090/tran/9110","url":null,"abstract":"<p>In this note we find <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">lambda &gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and give an explicit construction of a separable Banach space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that there is no <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\"> <mml:semantics> <mml:mi>λ<!-- λ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Lipschitz retraction from <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> onto any compact convex subset of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose closed linear span is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This is closely related to a well-known open problem raised by Godefroy and Ozawa in 2014 and represents the first known example of a Banach space with such a property.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"26 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher rank (𝑞,𝑡)-Catalan polynomials, affine Springer fibers, and a finite rational shuffle theorem 高阶(△,𝑡)-卡塔兰多项式、仿射 Springer 纤维和有限有理洗牌定理
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-03 DOI: 10.1090/tran/9115
Nicolle González, José Simental, Monica Vazirani
{"title":"Higher rank (𝑞,𝑡)-Catalan polynomials, affine Springer fibers, and a finite rational shuffle theorem","authors":"Nicolle González, José Simental, Monica Vazirani","doi":"10.1090/tran/9115","DOIUrl":"https://doi.org/10.1090/tran/9115","url":null,"abstract":"<p>We introduce the higher rank <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis q comma t right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>q</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(q,t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Catalan polynomials and prove they equal truncations of the Hikita polynomial to a finite number of variables. Using affine compositions and a certain standardization map, we define a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"monospace d monospace i monospace n monospace v\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"monospace\">d</mml:mi> <mml:mi mathvariant=\"monospace\">i</mml:mi> <mml:mi mathvariant=\"monospace\">n</mml:mi> <mml:mi mathvariant=\"monospace\">v</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathtt {dinv}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> statistic on rank <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\"application/x-tex\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> semistandard <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis m comma n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>m</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(m,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-parking functions and prove <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"monospace c monospace o monospace d monospace i monospace n monospace v\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"monospace\">c</mml:mi> <mml:mi mathvariant=\"monospace\">o</mml:mi> <mml:mi mathvariant=\"monospace\">d</mml:mi> <mml:mi mathvariant=\"monospace\">i</mml:mi> <mml:mi mathvariant=\"monospace\">n</mml:mi> <mml:mi mathvariant=\"monospace\">v</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathtt {codinv}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> counts the dimension of an affine space in an affine paving of a parabolic affine Springer fiber. Combining these results, we give a finite analogue of the Rational Shuffle Theorem in the context of double affine Hecke algebras. Lastly, we also give a Bizley-type formula for the higher rank Catalan numbers in the non-coprime case.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"7 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weierstrass bridges 魏尔斯特拉斯桥梁
IF 1.3 2区 数学
Transactions of the American Mathematical Society Pub Date : 2024-01-03 DOI: 10.1090/tran/9116
Alexander Schied, Zhenyuan Zhang
{"title":"Weierstrass bridges","authors":"Alexander Schied, Zhenyuan Zhang","doi":"10.1090/tran/9116","DOIUrl":"https://doi.org/10.1090/tran/9116","url":null,"abstract":"<p>We introduce a new class of stochastic processes called fractional Wiener–Weierstraß bridges. They arise by applying the convolution from the construction of the classical, fractal Weierstraß functions to an underlying fractional Brownian bridge. By analyzing the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-th variation of the fractional Wiener–Weierstraß bridge along the sequence of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b\"> <mml:semantics> <mml:mi>b</mml:mi> <mml:annotation encoding=\"application/x-tex\">b</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic partitions, we identify two regimes in which the processes exhibit distinct sample path properties. We also analyze the critical case between those two regimes for Wiener–Weierstraß bridges that are based on a standard Brownian bridge. We furthermore prove that fractional Wiener–Weierstraß bridges are never semimartingales, and we show that their covariance functions are typically fractal functions. Some of our results are extended to Weierstraß bridges based on bridges derived from a general continuous Gaussian martingale.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"207 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of NGF and Photobiomodulation Therapy on Crush Nerve Injury and Fracture Healing: A Stereological and Histopathological Study in an Animal Model. 神经生长因子和光生物调节治疗对挤压神经损伤和骨折愈合的影响:动物模型的体视学和组织病理学研究。
IF 1.2 2区 数学
Transactions of the American Mathematical Society Pub Date : 2023-12-01 Epub Date: 2022-11-15 DOI: 10.1177/19433875221138175
Esengül Şen, Nilüfer Özkan, Mehmet Emin Önger, Süleyman Kaplan
{"title":"Effects of NGF and Photobiomodulation Therapy on Crush Nerve Injury and Fracture Healing: A Stereological and Histopathological Study in an Animal Model.","authors":"Esengül Şen, Nilüfer Özkan, Mehmet Emin Önger, Süleyman Kaplan","doi":"10.1177/19433875221138175","DOIUrl":"10.1177/19433875221138175","url":null,"abstract":"<p><strong>Study design: </strong>A stereological and histopathological study in an animal model.</p><p><strong>Objective: </strong>This study explores the effects of the nerve growth factor and photobiomodulation therapy on the damaged nerve tissue and fracture healing.</p><p><strong>Methods: </strong>A total of 24 rabbits were divided into 4 groups: control group (n = 5), nerve growth factor (NGF) group (n = 7), photobiomodulation (PBMT) group (n = 6), and nerve growth factor and photobiomodulation therapy (NGF+PBMT) group (n = 6). The vertical fracture was performed between the mental foramen and the first premolar, and the mental nerve was crushed for 30 seconds with a standard serrated clamp with a force of approximately 50 N in all groups. The control group received an isotonic solution (.02 mL, .09% NaCl) to the operation site locally. The NGF group received 1 μg human NGF-β/.9% .2 mL NaCl solution for 7 days locally. The PBMT group received PBMT treatment (GaAlAs laser, 810 nm, .3 W, 18 J/cm<sup>2</sup>) every 48 hours for 14 sessions following the surgery. The NGF+PBMT group received both NGF and PBMT treatment as described above. After 28 days, the bone tissues and mental nerves from all groups were harvested and histologically and stereologically analyzed.</p><p><strong>Results: </strong>According to the stereological results, the volume of the new vessel and the volume of the new bone were significantly higher in the PBMT group than in other groups (P < .001). According to the histopathological examinations, higher myelinated axons were observed in experimental groups than in the control group.</p><p><strong>Conclusions: </strong>As a result, PBMT has beneficial effects on bone regeneration. Based on the light microscopic evaluation, more regenerated axon populations were observed in the NGF group than in the PBMT and PBMT + NGF groups in terms of myelinated axon content.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"184 1","pages":"281-291"},"PeriodicalIF":1.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82690653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the rôle of singular functions in extending the probabilistic symbol to its most general class 论奇异函数的rôle将概率符号扩展到它的最一般类
2区 数学
Transactions of the American Mathematical Society Pub Date : 2023-11-09 DOI: 10.1090/tran/9064
Sebastian Rickelhoff, Alexander Schnurr
{"title":"On the rôle of singular functions in extending the probabilistic symbol to its most general class","authors":"Sebastian Rickelhoff, Alexander Schnurr","doi":"10.1090/tran/9064","DOIUrl":"https://doi.org/10.1090/tran/9064","url":null,"abstract":"The probabilistic symbol is the right-hand side derivative of the characteristic functions corresponding to the one-dimensional marginals of a stochastic process. This object, as long as the derivative exists, provides crucial information concerning the stochastic process. For a Lévy process, one obtains the characteristic exponent while the symbol of a (rich) Feller process coincides with the classical symbol which is well known from the theory of pseudodifferential operators. Leaving these classes behind, the most general class of processes for which the symbol still exists are Lévy-type processes. It has been an open question, whether further generalizations are possible within the framework of Markov processes. We answer this question in the present article: within the class of Hunt semimartingales, Lévy-type processes are exactly those for which the probabilistic symbol exists. Leaving Hunt behind, one can construct processes admitting a symbol. However, we show, that the applicability of the symbol might be lost for these processes. Surprisingly, in our proofs the upper and lower Dini derivatives corresponding to certain singular functions play an important rôle.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":" 92","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135191250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A solution operator for the overline{∂} equation in Sobolev spaces of negative index 负指标Sobolev空间中overline{∂}方程的解算子
2区 数学
Transactions of the American Mathematical Society Pub Date : 2023-11-09 DOI: 10.1090/tran/9066
Ziming Shi, Liding Yao
{"title":"A solution operator for the overline{∂} equation in Sobolev spaces of negative index","authors":"Ziming Shi, Liding Yao","doi":"10.1090/tran/9066","DOIUrl":"https://doi.org/10.1090/tran/9066","url":null,"abstract":"Let &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\"&gt; &lt;mml:semantics&gt; &lt;mml:mi mathvariant=\"normal\"&gt;Ω&lt;!-- Ω --&gt;&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;Omega&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; be a strictly pseudoconvex domain in &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C Superscript n\"&gt; &lt;mml:semantics&gt; &lt;mml:msup&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;C&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathbb {C}^n&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; with &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript k plus 2\"&gt; &lt;mml:semantics&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;C&lt;/mml:mi&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;C^{k+2}&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; boundary, &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than-or-equal-to 1\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;mml:mo&gt;≥&lt;!-- ≥ --&gt;&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;k geq 1&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;. We construct a &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove partial-differential With bar\"&gt; &lt;mml:semantics&gt; &lt;mml:mover&gt; &lt;mml:mi mathvariant=\"normal\"&gt;∂&lt;!-- ∂ --&gt;&lt;/mml:mi&gt; &lt;mml:mo accent=\"false\"&gt;¯&lt;!-- ¯ --&gt;&lt;/mml:mo&gt; &lt;/mml:mover&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;overline partial&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; solution operator (depending on &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;k&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;) that gains &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one half\"&gt; &lt;mml:semantics&gt; &lt;mml:mfrac&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;/mml:mfrac&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;frac 12&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; derivative in the Sobolev space &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript s comma p Baseline left-parenthesis normal upper Omega right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;H&lt;/mml:mi&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi&gt;s&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":" 93","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135191249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moduli spaces of Lie algebras and foliations 李代数与叶形的模空间
2区 数学
Transactions of the American Mathematical Society Pub Date : 2023-11-09 DOI: 10.1090/tran/9072
Sebastián Velazquez
{"title":"Moduli spaces of Lie algebras and foliations","authors":"Sebastián Velazquez","doi":"10.1090/tran/9072","DOIUrl":"https://doi.org/10.1090/tran/9072","url":null,"abstract":"Let &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;X&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;X&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; be a smooth projective variety over the complex numbers and &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S left-parenthesis d right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;S&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;d&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;S(d)&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; the scheme parametrizing &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;d&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;d&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-dimensional Lie subalgebras of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 0 Baseline left-parenthesis upper X comma script upper T upper X right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;H&lt;/mml:mi&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:msup&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;X&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;T&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;X&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;H^0(X,mathcal {T}X)&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;. This article is dedicated to the study of the geometry of the moduli space &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Inv\"&gt; &lt;mml:semantics&gt; &lt;mml:mtext&gt;Inv&lt;/mml:mtext&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;text {Inv}&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; of involutive distributions on &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;X&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;X&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; around the points &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper F element-of Inv\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;F&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;∈&lt;!-- ∈ --&gt;&lt;/mml:mo&gt; &lt;mml:mtext&gt;Inv&lt;/mml:mtext&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathcal {F}in text {Inv}&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; which are induced by Lie group actions. For every &lt;inline-formula content-type=\"math/mathm","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":" 50","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135190995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信