{"title":"Moduli spaces of Lie algebras and foliations","authors":"Sebastián Velazquez","doi":"10.1090/tran/9072","DOIUrl":null,"url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a smooth projective variety over the complex numbers and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S left-parenthesis d right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>d</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">S(d)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the scheme parametrizing <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional Lie subalgebras of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 0 Baseline left-parenthesis upper X comma script upper T upper X right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">T</mml:mi> </mml:mrow> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^0(X,\\mathcal {T}X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This article is dedicated to the study of the geometry of the moduli space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Inv\"> <mml:semantics> <mml:mtext>Inv</mml:mtext> <mml:annotation encoding=\"application/x-tex\">\\text {Inv}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of involutive distributions on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> around the points <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper F element-of Inv\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">F</mml:mi> </mml:mrow> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mtext>Inv</mml:mtext> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {F}\\in \\text {Inv}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which are induced by Lie group actions. For every <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g element-of upper S left-parenthesis d right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">g</mml:mi> </mml:mrow> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>d</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}\\in S(d)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> one can consider the corresponding element <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper F left-parenthesis German g right-parenthesis element-of Inv\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">F</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">g</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mtext>Inv</mml:mtext> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {F}(\\mathfrak {g})\\in \\text {Inv}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose generic leaf coincides with an orbit of the action of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"exp left-parenthesis German g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>exp</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">g</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\exp (\\mathfrak {g})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that under mild hypotheses, after taking a stratification <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"coproduct Underscript i Endscripts upper S left-parenthesis d right-parenthesis Subscript i Baseline right-arrow upper S left-parenthesis d right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo>∐<!-- ∐ --></mml:mo> <mml:mi>i</mml:mi> </mml:munder> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>d</mml:mi> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>i</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>d</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\coprod _i S(d)_i\\to S(d)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> this assignment yields an isomorphism <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi colon coproduct Underscript i Endscripts upper S left-parenthesis d right-parenthesis Subscript i Baseline right-arrow Inv\"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>:</mml:mo> <mml:munder> <mml:mo>∐<!-- ∐ --></mml:mo> <mml:mi>i</mml:mi> </mml:munder> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>d</mml:mi> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>i</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mtext>Inv</mml:mtext> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\phi :\\coprod _i S(d)_i\\to \\text {Inv}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> locally around <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">g</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper F left-parenthesis German g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">F</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">g</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {F}(\\mathfrak {g})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This gives a common explanation for many results appearing independently in the literature. We also construct new stable families of foliations which are induced by Lie group actions.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/9072","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let XX be a smooth projective variety over the complex numbers and S(d)S(d) the scheme parametrizing dd-dimensional Lie subalgebras of H0(X,TX)H^0(X,\mathcal {T}X). This article is dedicated to the study of the geometry of the moduli space Inv\text {Inv} of involutive distributions on XX around the points F∈Inv\mathcal {F}\in \text {Inv} which are induced by Lie group actions. For every g∈S(d)\mathfrak {g}\in S(d) one can consider the corresponding element F(g)∈Inv\mathcal {F}(\mathfrak {g})\in \text {Inv}, whose generic leaf coincides with an orbit of the action of exp(g)\exp (\mathfrak {g}) on XX. We show that under mild hypotheses, after taking a stratification ∐iS(d)i→S(d)\coprod _i S(d)_i\to S(d) this assignment yields an isomorphism ϕ:∐iS(d)i→Inv\phi :\coprod _i S(d)_i\to \text {Inv} locally around g\mathfrak {g} and F(g)\mathcal {F}(\mathfrak {g}). This gives a common explanation for many results appearing independently in the literature. We also construct new stable families of foliations which are induced by Lie group actions.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.