A solution operator for the \overline{∂} equation in Sobolev spaces of negative index

IF 1.2 2区 数学 Q1 MATHEMATICS
Ziming Shi, Liding Yao
{"title":"A solution operator for the \\overline{∂} equation in Sobolev spaces of negative index","authors":"Ziming Shi, Liding Yao","doi":"10.1090/tran/9066","DOIUrl":null,"url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a strictly pseudoconvex domain in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">C</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript k plus 2\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^{k+2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> boundary, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k \\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We construct a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove partial-differential With bar\"> <mml:semantics> <mml:mover> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:annotation encoding=\"application/x-tex\">\\overline \\partial</mml:annotation> </mml:semantics> </mml:math> </inline-formula> solution operator (depending on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) that gains <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one half\"> <mml:semantics> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:annotation encoding=\"application/x-tex\">\\frac 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula> derivative in the Sobolev space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript s comma p Baseline left-parenthesis normal upper Omega right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^{s,p} (\\Omega )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 greater-than p greater-than normal infinity\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1&gt;p&gt;\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s greater-than StartFraction 1 Over p EndFraction minus k\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>p</mml:mi> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">s&gt;\\frac {1}{p} -k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. If the domain is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^{\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then there exists a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove partial-differential With bar\"> <mml:semantics> <mml:mover> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:annotation encoding=\"application/x-tex\">\\overline \\partial</mml:annotation> </mml:semantics> </mml:math> </inline-formula> solution operator that gains <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one half\"> <mml:semantics> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:annotation encoding=\"application/x-tex\">\\frac 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula> derivative in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript s comma p Baseline left-parenthesis normal upper Omega right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^{s,p}(\\Omega )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s element-of double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">s \\in \\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We obtain our solution operators via the method of homotopy formula. A novel technique is the construction of “anti-derivative operators” for distributions defined on bounded Lipschitz domains.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":" 93","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/9066","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Ω \Omega be a strictly pseudoconvex domain in C n \mathbb {C}^n with C k + 2 C^{k+2} boundary, k 1 k \geq 1 . We construct a ¯ \overline \partial solution operator (depending on k k ) that gains 1 2 \frac 12 derivative in the Sobolev space H s , p ( Ω ) H^{s,p} (\Omega ) for any 1 > p > 1>p>\infty and s > 1 p k s>\frac {1}{p} -k . If the domain is C C^{\infty } , then there exists a ¯ \overline \partial solution operator that gains 1 2 \frac 12 derivative in H s , p ( Ω ) H^{s,p}(\Omega ) for all s R s \in \mathbb {R} . We obtain our solution operators via the method of homotopy formula. A novel technique is the construction of “anti-derivative operators” for distributions defined on bounded Lipschitz domains.
负指标Sobolev空间中\overline{∂}方程的解算子
让Ω \Omega 是C n中的严格伪凸域 \mathbb {c}^n乘以ck + 2c ^{k+2} 边界,k≥1k \geq 1。我们构造一个∂¯ \overline \partial 解算子(取决于k k)得到1 2 \frac Sobolev空间中的12阶导数H sp (Ω) H^{s,p} (\Omega )查询任何1 &gt;P &gt;∞1&gt;p&gt;\infty 还有s &gt;1 p−k s&gt;\frac {1}{p} -k。如果定义域是C∞C^{\infty } ,那么就存在∂¯ \overline \partial 解算子得到12 \frac H的12阶导数p (Ω) H^{s,p}(\Omega ),对于所有s∈rs \in \mathbb {r} . 我们用同伦公式的方法得到了解算子。对于有界Lipschitz域上定义的分布,构造“不定算子”是一种新技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信