{"title":"A solution operator for the \\overline{∂} equation in Sobolev spaces of negative index","authors":"Ziming Shi, Liding Yao","doi":"10.1090/tran/9066","DOIUrl":null,"url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a strictly pseudoconvex domain in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">C</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript k plus 2\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^{k+2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> boundary, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k \\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We construct a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove partial-differential With bar\"> <mml:semantics> <mml:mover> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:annotation encoding=\"application/x-tex\">\\overline \\partial</mml:annotation> </mml:semantics> </mml:math> </inline-formula> solution operator (depending on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) that gains <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one half\"> <mml:semantics> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:annotation encoding=\"application/x-tex\">\\frac 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula> derivative in the Sobolev space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript s comma p Baseline left-parenthesis normal upper Omega right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^{s,p} (\\Omega )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 greater-than p greater-than normal infinity\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1>p>\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s greater-than StartFraction 1 Over p EndFraction minus k\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>p</mml:mi> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">s>\\frac {1}{p} -k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. If the domain is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^{\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then there exists a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove partial-differential With bar\"> <mml:semantics> <mml:mover> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:annotation encoding=\"application/x-tex\">\\overline \\partial</mml:annotation> </mml:semantics> </mml:math> </inline-formula> solution operator that gains <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one half\"> <mml:semantics> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:annotation encoding=\"application/x-tex\">\\frac 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula> derivative in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript s comma p Baseline left-parenthesis normal upper Omega right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^{s,p}(\\Omega )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s element-of double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">s \\in \\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We obtain our solution operators via the method of homotopy formula. A novel technique is the construction of “anti-derivative operators” for distributions defined on bounded Lipschitz domains.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":" 93","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/9066","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let Ω\Omega be a strictly pseudoconvex domain in Cn\mathbb {C}^n with Ck+2C^{k+2} boundary, k≥1k \geq 1. We construct a ∂¯\overline \partial solution operator (depending on kk) that gains 12\frac 12 derivative in the Sobolev space Hs,p(Ω)H^{s,p} (\Omega ) for any 1>p>∞1>p>\infty and s>1p−ks>\frac {1}{p} -k. If the domain is C∞C^{\infty }, then there exists a ∂¯\overline \partial solution operator that gains 12\frac 12 derivative in Hs,p(Ω)H^{s,p}(\Omega ) for all s∈Rs \in \mathbb {R}. We obtain our solution operators via the method of homotopy formula. A novel technique is the construction of “anti-derivative operators” for distributions defined on bounded Lipschitz domains.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.