{"title":"The ratios conjecture for real Dirichlet characters and multiple Dirichlet series","authors":"Martin Čech","doi":"10.1090/tran/9113","DOIUrl":null,"url":null,"abstract":"<p>Conrey, Farmer and Zirnbauer introduced a recipe to find asymptotic formulas for the sum of ratios of products of shifted L-functions. These ratios conjectures are very powerful and can be used to determine many statistics of L-functions, including moments or statistics about the distribution of zeros.</p> <p>We consider the family of real Dirichlet characters, and use multiple Dirichlet series to prove the ratios conjectures with one shift in the numerator and denominator in some range of the shifts. This range can be improved by extending the family to include non-primitive characters. All of the results are conditional under the Generalized Riemann hypothesis.</p> <p>This extended range is good enough to enable us to compute an asymptotic formula for the sum of shifted logarithmic derivatives near the critical line. As an application, we compute the one-level density for test functions whose Fourier transform is supported in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative 2 comma 2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\left (-2,2\\right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, including lower-order terms.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9113","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Conrey, Farmer and Zirnbauer introduced a recipe to find asymptotic formulas for the sum of ratios of products of shifted L-functions. These ratios conjectures are very powerful and can be used to determine many statistics of L-functions, including moments or statistics about the distribution of zeros.
We consider the family of real Dirichlet characters, and use multiple Dirichlet series to prove the ratios conjectures with one shift in the numerator and denominator in some range of the shifts. This range can be improved by extending the family to include non-primitive characters. All of the results are conditional under the Generalized Riemann hypothesis.
This extended range is good enough to enable us to compute an asymptotic formula for the sum of shifted logarithmic derivatives near the critical line. As an application, we compute the one-level density for test functions whose Fourier transform is supported in (−2,2)\left (-2,2\right ), including lower-order terms.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.