求助PDF
{"title":"负指标Sobolev空间中\\overline{∂}方程的解算子","authors":"Ziming Shi, Liding Yao","doi":"10.1090/tran/9066","DOIUrl":null,"url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a strictly pseudoconvex domain in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">C</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript k plus 2\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^{k+2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> boundary, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k \\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We construct a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove partial-differential With bar\"> <mml:semantics> <mml:mover> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:annotation encoding=\"application/x-tex\">\\overline \\partial</mml:annotation> </mml:semantics> </mml:math> </inline-formula> solution operator (depending on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) that gains <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one half\"> <mml:semantics> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:annotation encoding=\"application/x-tex\">\\frac 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula> derivative in the Sobolev space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript s comma p Baseline left-parenthesis normal upper Omega right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^{s,p} (\\Omega )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 greater-than p greater-than normal infinity\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1>p>\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s greater-than StartFraction 1 Over p EndFraction minus k\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>p</mml:mi> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">s>\\frac {1}{p} -k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. If the domain is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^{\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then there exists a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove partial-differential With bar\"> <mml:semantics> <mml:mover> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:annotation encoding=\"application/x-tex\">\\overline \\partial</mml:annotation> </mml:semantics> </mml:math> </inline-formula> solution operator that gains <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one half\"> <mml:semantics> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:annotation encoding=\"application/x-tex\">\\frac 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula> derivative in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript s comma p Baseline left-parenthesis normal upper Omega right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^{s,p}(\\Omega )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s element-of double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">s \\in \\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We obtain our solution operators via the method of homotopy formula. A novel technique is the construction of “anti-derivative operators” for distributions defined on bounded Lipschitz domains.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":" 93","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A solution operator for the \\\\overline{∂} equation in Sobolev spaces of negative index\",\"authors\":\"Ziming Shi, Liding Yao\",\"doi\":\"10.1090/tran/9066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Omega\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a strictly pseudoconvex domain in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C Superscript n\\\"> <mml:semantics> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {C}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript k plus 2\\\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">C^{k+2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> boundary, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k greater-than-or-equal-to 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">k \\\\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We construct a <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove partial-differential With bar\\\"> <mml:semantics> <mml:mover> <mml:mi mathvariant=\\\"normal\\\">∂<!-- ∂ --></mml:mi> <mml:mo accent=\\\"false\\\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\overline \\\\partial</mml:annotation> </mml:semantics> </mml:math> </inline-formula> solution operator (depending on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) that gains <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"one half\\\"> <mml:semantics> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\frac 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula> derivative in the Sobolev space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript s comma p Baseline left-parenthesis normal upper Omega right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">H^{s,p} (\\\\Omega )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1 greater-than p greater-than normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">1>p>\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"s greater-than StartFraction 1 Over p EndFraction minus k\\\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>p</mml:mi> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">s>\\\\frac {1}{p} -k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. If the domain is <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">C^{\\\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then there exists a <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove partial-differential With bar\\\"> <mml:semantics> <mml:mover> <mml:mi mathvariant=\\\"normal\\\">∂<!-- ∂ --></mml:mi> <mml:mo accent=\\\"false\\\">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\overline \\\\partial</mml:annotation> </mml:semantics> </mml:math> </inline-formula> solution operator that gains <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"one half\\\"> <mml:semantics> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\frac 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula> derivative in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript s comma p Baseline left-parenthesis normal upper Omega right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">H^{s,p}(\\\\Omega )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"s element-of double-struck upper R\\\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">s \\\\in \\\\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We obtain our solution operators via the method of homotopy formula. A novel technique is the construction of “anti-derivative operators” for distributions defined on bounded Lipschitz domains.\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":\" 93\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9066\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/9066","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
A solution operator for the \overline{∂} equation in Sobolev spaces of negative index
Let Ω \Omega be a strictly pseudoconvex domain in C n \mathbb {C}^n with C k + 2 C^{k+2} boundary, k ≥ 1 k \geq 1 . We construct a ∂ ¯ \overline \partial solution operator (depending on k k ) that gains 1 2 \frac 12 derivative in the Sobolev space H s , p ( Ω ) H^{s,p} (\Omega ) for any 1 > p > ∞ 1>p>\infty and s > 1 p − k s>\frac {1}{p} -k . If the domain is C ∞ C^{\infty } , then there exists a ∂ ¯ \overline \partial solution operator that gains 1 2 \frac 12 derivative in H s , p ( Ω ) H^{s,p}(\Omega ) for all s ∈ R s \in \mathbb {R} . We obtain our solution operators via the method of homotopy formula. A novel technique is the construction of “anti-derivative operators” for distributions defined on bounded Lipschitz domains.