实狄利克特字符和多重狄利克特数列的比率猜想

IF 1.2 2区 数学 Q1 MATHEMATICS
Martin Čech
{"title":"实狄利克特字符和多重狄利克特数列的比率猜想","authors":"Martin Čech","doi":"10.1090/tran/9113","DOIUrl":null,"url":null,"abstract":"<p>Conrey, Farmer and Zirnbauer introduced a recipe to find asymptotic formulas for the sum of ratios of products of shifted L-functions. These ratios conjectures are very powerful and can be used to determine many statistics of L-functions, including moments or statistics about the distribution of zeros.</p> <p>We consider the family of real Dirichlet characters, and use multiple Dirichlet series to prove the ratios conjectures with one shift in the numerator and denominator in some range of the shifts. This range can be improved by extending the family to include non-primitive characters. All of the results are conditional under the Generalized Riemann hypothesis.</p> <p>This extended range is good enough to enable us to compute an asymptotic formula for the sum of shifted logarithmic derivatives near the critical line. As an application, we compute the one-level density for test functions whose Fourier transform is supported in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative 2 comma 2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\left (-2,2\\right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, including lower-order terms.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ratios conjecture for real Dirichlet characters and multiple Dirichlet series\",\"authors\":\"Martin Čech\",\"doi\":\"10.1090/tran/9113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conrey, Farmer and Zirnbauer introduced a recipe to find asymptotic formulas for the sum of ratios of products of shifted L-functions. These ratios conjectures are very powerful and can be used to determine many statistics of L-functions, including moments or statistics about the distribution of zeros.</p> <p>We consider the family of real Dirichlet characters, and use multiple Dirichlet series to prove the ratios conjectures with one shift in the numerator and denominator in some range of the shifts. This range can be improved by extending the family to include non-primitive characters. All of the results are conditional under the Generalized Riemann hypothesis.</p> <p>This extended range is good enough to enable us to compute an asymptotic formula for the sum of shifted logarithmic derivatives near the critical line. As an application, we compute the one-level density for test functions whose Fourier transform is supported in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis negative 2 comma 2 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\left (-2,2\\\\right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, including lower-order terms.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9113\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9113","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Conrey、Farmer 和 Zirnbauer 提出了一种方法,可以找到移位 L 函数乘积比率之和的渐近公式。这些比率猜想非常强大,可用于确定 L 函数的许多统计数据,包括矩或有关零点分布的统计数据。我们考虑实 Dirichlet 字符族,并使用多重 Dirichlet 级数来证明比率猜想,其分子和分母在移位的某个范围内有一次移位。这个范围可以通过扩展该族以包括非原始字符来改进。所有结果都是广义黎曼假设条件下的结果。这一扩展范围足以让我们计算出临界线附近移位对数导数之和的渐近公式。作为应用,我们计算了傅里叶变换在 ( - 2 , 2 ) \left (-2,2\right ) 中得到支持的检验函数的单级密度,包括低阶项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The ratios conjecture for real Dirichlet characters and multiple Dirichlet series

Conrey, Farmer and Zirnbauer introduced a recipe to find asymptotic formulas for the sum of ratios of products of shifted L-functions. These ratios conjectures are very powerful and can be used to determine many statistics of L-functions, including moments or statistics about the distribution of zeros.

We consider the family of real Dirichlet characters, and use multiple Dirichlet series to prove the ratios conjectures with one shift in the numerator and denominator in some range of the shifts. This range can be improved by extending the family to include non-primitive characters. All of the results are conditional under the Generalized Riemann hypothesis.

This extended range is good enough to enable us to compute an asymptotic formula for the sum of shifted logarithmic derivatives near the critical line. As an application, we compute the one-level density for test functions whose Fourier transform is supported in ( 2 , 2 ) \left (-2,2\right ) , including lower-order terms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信