{"title":"3-2-1 foliations for Reeb flows on the tight 3-sphere","authors":"Carolina de Oliveira","doi":"10.1090/tran/9119","DOIUrl":null,"url":null,"abstract":"<p>We study the existence of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 minus 2 minus 1\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3-2-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> foliations adapted to Reeb flows on the tight <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-sphere. These foliations admit precisely three binding orbits whose Conley-Zehnder indices are <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\"application/x-tex\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\"application/x-tex\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively. All regular leaves are disks and annuli asymptotic to the binding orbits. Our main results provide sufficient conditions for the existence of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 minus 2 minus 1\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3-2-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> foliations with prescribed binding orbits. We also exhibit a concrete Hamiltonian on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript 4\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>4</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> admitting <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 minus 2 minus 1\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3-2-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> foliations when restricted to suitable energy levels.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9119","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the existence of 3−2−13-2-1 foliations adapted to Reeb flows on the tight 33-sphere. These foliations admit precisely three binding orbits whose Conley-Zehnder indices are 33, 22, and 11, respectively. All regular leaves are disks and annuli asymptotic to the binding orbits. Our main results provide sufficient conditions for the existence of 3−2−13-2-1 foliations with prescribed binding orbits. We also exhibit a concrete Hamiltonian on R4\mathbb {R}^4 admitting 3−2−13-2-1 foliations when restricted to suitable energy levels.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.