3-2-1 foliations for Reeb flows on the tight 3-sphere

IF 1.2 2区 数学 Q1 MATHEMATICS
Carolina de Oliveira
{"title":"3-2-1 foliations for Reeb flows on the tight 3-sphere","authors":"Carolina de Oliveira","doi":"10.1090/tran/9119","DOIUrl":null,"url":null,"abstract":"<p>We study the existence of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 minus 2 minus 1\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3-2-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> foliations adapted to Reeb flows on the tight <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-sphere. These foliations admit precisely three binding orbits whose Conley-Zehnder indices are <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\"application/x-tex\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\"application/x-tex\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively. All regular leaves are disks and annuli asymptotic to the binding orbits. Our main results provide sufficient conditions for the existence of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 minus 2 minus 1\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3-2-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> foliations with prescribed binding orbits. We also exhibit a concrete Hamiltonian on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript 4\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>4</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> admitting <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3 minus 2 minus 1\"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">3-2-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> foliations when restricted to suitable energy levels.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9119","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the existence of 3 2 1 3-2-1 foliations adapted to Reeb flows on the tight 3 3 -sphere. These foliations admit precisely three binding orbits whose Conley-Zehnder indices are 3 3 , 2 2 , and 1 1 , respectively. All regular leaves are disks and annuli asymptotic to the binding orbits. Our main results provide sufficient conditions for the existence of 3 2 1 3-2-1 foliations with prescribed binding orbits. We also exhibit a concrete Hamiltonian on R 4 \mathbb {R}^4 admitting 3 2 1 3-2-1 foliations when restricted to suitable energy levels.

紧密三球面上里布流的 3-2-1 叶形
我们研究了紧 3 3 -球面上适应里布流的 3 - 2 - 1 3-2-1 叶形的存在。这些叶形恰好包含三个结合轨道,它们的康利-泽恩德指数分别为 3 3、2 2 和 1 1。所有规则叶片都是渐近于结合轨道的圆盘和环面。我们的主要结果为具有规定结合轨道的 3 - 2 - 1 3-2-1 叶形的存在提供了充分条件。我们还展示了 R 4 \mathbb {R}^4 上的一个具体哈密顿,当限制在合适的能级时,它允许 3 - 2 - 1 3-2-1 对折。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信