{"title":"On generalized main conjectures and 𝑝-adic Stark conjectures for Artin motives","authors":"Alexandre Maksoud","doi":"10.1090/tran/9131","DOIUrl":null,"url":null,"abstract":"<p>Given an odd prime number <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stabilized Artin representation <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"rho\"> <mml:semantics> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\rho</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we introduce a family of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic Stark regulators and we formulate an Iwasawa-Greenberg main conjecture and a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic Stark conjecture which can be seen as an explicit strengthening of conjectures by Perrin-Riou and Benois in the context of Artin motives. We show that these conjectures imply the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-part of the Tamagawa number conjecture for Artin motives at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">s=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and we obtain unconditional results on the torsionness of Selmer groups. We also relate our new conjectures with various main conjectures and variants of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic Stark conjectures that appear in the literature. In the case of monomial representations, we prove that our conjectures are essentially equivalent to some newly introduced Iwasawa-theoretic conjectures for Rubin-Stark elements. We derive from this a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic Beilinson-Stark formula for finite-order characters of an imaginary quadratic field in which <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is inert.</p> <p>Along the way, we prove that the Gross-Kuz’min conjecture unconditionally holds for abelian extensions of imaginary quadratic fields.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9131","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Given an odd prime number pp and a pp-stabilized Artin representation ρ\rho over Q\mathbb {Q}, we introduce a family of pp-adic Stark regulators and we formulate an Iwasawa-Greenberg main conjecture and a pp-adic Stark conjecture which can be seen as an explicit strengthening of conjectures by Perrin-Riou and Benois in the context of Artin motives. We show that these conjectures imply the pp-part of the Tamagawa number conjecture for Artin motives at s=0s=0 and we obtain unconditional results on the torsionness of Selmer groups. We also relate our new conjectures with various main conjectures and variants of pp-adic Stark conjectures that appear in the literature. In the case of monomial representations, we prove that our conjectures are essentially equivalent to some newly introduced Iwasawa-theoretic conjectures for Rubin-Stark elements. We derive from this a pp-adic Beilinson-Stark formula for finite-order characters of an imaginary quadratic field in which pp is inert.
Along the way, we prove that the Gross-Kuz’min conjecture unconditionally holds for abelian extensions of imaginary quadratic fields.
给定一个奇素数 p p 和一个在 Q \mathbb {Q} 上的 p p -stabilized Artin 表示 ρ \rho ,我们引入 p p -adic Stark 调节器族,并提出一个岩泽-格林伯格主猜想和一个 p p -adic Stark 猜想。 我们引入了 p p -adic 斯塔克调节器族,并提出了岩泽-格林伯格主猜想和 p p -adic 斯塔克猜想,它们可以看作是佩林-里奥和贝努瓦在阿尔丁动机背景下对猜想的明确加强。我们证明了这些猜想意味着在 s = 0 s=0 时阿尔丁动机的玉川数猜想的 p p 部分,并获得了关于塞尔默群扭转性的无条件结果。我们还将我们的新猜想与文献中出现的 p p -adic 斯塔克猜想的各种主要猜想和变体联系起来。在单项式表示的情况下,我们证明了我们的猜想本质上等同于一些新引入的鲁宾-斯塔克元素的岩泽理论猜想。由此,我们推导出一个 p p -adic Beilinson-Stark 公式,适用于 p p 是惰性的虚二次域的有限阶字符。同时,我们还证明了格罗斯-库兹明猜想对于虚二次域的无边扩展无条件成立。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.