{"title":"A rigidity theorem for asymptotically flat static manifolds and its applications","authors":"Brian Harvie, Ye-Kai Wang","doi":"10.1090/tran/9134","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the Minkowski-type inequality for asymptotically flat static manifolds <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper M Superscript n Baseline comma g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(M^{n},g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with boundary and with dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than 8\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>></mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n>8</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that was established by McCormick [Proc. Amer. Math. Soc. 146 (2018), pp. 4039–4046]. First, we show that any asymptotically flat static <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper M Superscript n Baseline comma g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(M^{n},g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which achieves the equality and has CMC or equipotential boundary is isometric to a rotationally symmetric region of the Schwarzschild manifold. Then, we apply conformal techniques to derive a new Minkowski-type inequality for the level sets of bounded static potentials. Taken together, these provide a robust approach to detecting rotational symmetry of asymptotically flat static systems.</p> <p>As an application, we prove global uniqueness of static metric extensions for the Bartnik data induced by both Schwarzschild coordinate spheres and Euclidean coordinate spheres in dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than 8\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>></mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n > 8</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under the natural condition of <italic>Schwarzschild stability</italic>. This generalizes an earlier result of Miao [Classical Quantum Gravity 22 (2005), pp. L53–L59]. We also establish uniqueness for equipotential photon surfaces with small Einstein-Hilbert energy. This is interesting to compare with other recent uniqueness results for static photon surfaces and black holes, e.g. see V. Agostiniani and L. Mazzieri [Comm. Math. Phys. 355 (2017), pp. 261–301], C. Cederbaum and G. J. Galloway [J. Math. Phys. 62 (2021), p. 22], and S. Raulot [Classical Quantum Gravity 38 (2021), p. 22].</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9134","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the Minkowski-type inequality for asymptotically flat static manifolds (Mn,g)(M^{n},g) with boundary and with dimension n>8n>8 that was established by McCormick [Proc. Amer. Math. Soc. 146 (2018), pp. 4039–4046]. First, we show that any asymptotically flat static (Mn,g)(M^{n},g) which achieves the equality and has CMC or equipotential boundary is isometric to a rotationally symmetric region of the Schwarzschild manifold. Then, we apply conformal techniques to derive a new Minkowski-type inequality for the level sets of bounded static potentials. Taken together, these provide a robust approach to detecting rotational symmetry of asymptotically flat static systems.
As an application, we prove global uniqueness of static metric extensions for the Bartnik data induced by both Schwarzschild coordinate spheres and Euclidean coordinate spheres in dimension n>8n > 8 under the natural condition of Schwarzschild stability. This generalizes an earlier result of Miao [Classical Quantum Gravity 22 (2005), pp. L53–L59]. We also establish uniqueness for equipotential photon surfaces with small Einstein-Hilbert energy. This is interesting to compare with other recent uniqueness results for static photon surfaces and black holes, e.g. see V. Agostiniani and L. Mazzieri [Comm. Math. Phys. 355 (2017), pp. 261–301], C. Cederbaum and G. J. Galloway [J. Math. Phys. 62 (2021), p. 22], and S. Raulot [Classical Quantum Gravity 38 (2021), p. 22].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.