{"title":"Boundedness and compactness of Hausdorff operators on Fock spaces","authors":"Óscar Blasco, Antonio Galbis","doi":"10.1090/tran/9133","DOIUrl":null,"url":null,"abstract":"<p>We obtain a complete characterization of the bounded Hausdorff operators acting on a Fock space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F Subscript alpha Superscript p\"> <mml:semantics> <mml:msubsup> <mml:mi>F</mml:mi> <mml:mi>α</mml:mi> <mml:mi>p</mml:mi> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">F^p_\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and taking its values into a larger one <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F Subscript alpha Superscript q Baseline comma 0 greater-than p less-than-or-equal-to q less-than-or-equal-to normal infinity\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>F</mml:mi> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msubsup> <mml:mo>,</mml:mo> <mml:mtext> </mml:mtext> <mml:mn>0</mml:mn> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>q</mml:mi> <mml:mo>≤</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">F^q_\\alpha ,\\ 0 > p \\leq q \\leq \\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, as well as some necessary or sufficient conditions for a Hausdorff operator to transform a Fock space into a smaller one. Some results are written in the context of mixed norm Fock spaces. Also the compactness of Hausdorff operators on a Fock space is characterized. The compactness result for Hausdorff operators on the Fock space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F Subscript alpha Superscript normal infinity\"> <mml:semantics> <mml:msubsup> <mml:mi>F</mml:mi> <mml:mi>α</mml:mi> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">F^\\infty _\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is extended to more general Banach spaces of entire functions with weighted sup norms defined in terms of a radial weight and conditions for the Hausdorff operators to become <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-summing are also included.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"44 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9133","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We obtain a complete characterization of the bounded Hausdorff operators acting on a Fock space FαpF^p_\alpha and taking its values into a larger one Fαq,0>p≤q≤∞F^q_\alpha ,\ 0 > p \leq q \leq \infty, as well as some necessary or sufficient conditions for a Hausdorff operator to transform a Fock space into a smaller one. Some results are written in the context of mixed norm Fock spaces. Also the compactness of Hausdorff operators on a Fock space is characterized. The compactness result for Hausdorff operators on the Fock space Fα∞F^\infty _\alpha is extended to more general Banach spaces of entire functions with weighted sup norms defined in terms of a radial weight and conditions for the Hausdorff operators to become pp-summing are also included.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.