{"title":"A higher Gross–Zagier formula and the structure of Selmer groups","authors":"Chan-Ho Kim","doi":"10.1090/tran/9125","DOIUrl":null,"url":null,"abstract":"<p>We describe a Kolyvagin system-theoretic refinement of Gross–Zagier formula by comparing Heegner point Kolyvagin systems with Kurihara numbers when the root number of a rational elliptic curve <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over an imaginary quadratic field <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"negative 1\"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. When the root number of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is 1, we first establish the structure theorem of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>p</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">p^\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Selmer group of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The description is given by the values of certain families of quaternionic automorphic forms, which is a part of bipartite Euler systems. By comparing bipartite Euler systems with Kurihara numbers, we also obtain an analogous refinement of Waldspurger formula. No low analytic rank assumption is imposed in both refinements.</p> <p>We also prove the equivalence between the non-triviality of various “Kolyvagin systems” and the corresponding main conjecture localized at the augmentation ideal. As consequences, we obtain new applications of (weaker versions of) the Heegner point main conjecture and the anticyclotomic main conjecture to the structure of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>p</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">p^\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Selmer groups of elliptic curves of arbitrary rank. In particular, the Heegner point main conjecture localized at the augmentation ideal implies the strong rank one <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-converse to the theorem of Gross–Zagier and Kolyvagin.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9125","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We describe a Kolyvagin system-theoretic refinement of Gross–Zagier formula by comparing Heegner point Kolyvagin systems with Kurihara numbers when the root number of a rational elliptic curve EE over an imaginary quadratic field KK is −1-1. When the root number of EE over KK is 1, we first establish the structure theorem of the p∞p^\infty-Selmer group of EE over KK. The description is given by the values of certain families of quaternionic automorphic forms, which is a part of bipartite Euler systems. By comparing bipartite Euler systems with Kurihara numbers, we also obtain an analogous refinement of Waldspurger formula. No low analytic rank assumption is imposed in both refinements.
We also prove the equivalence between the non-triviality of various “Kolyvagin systems” and the corresponding main conjecture localized at the augmentation ideal. As consequences, we obtain new applications of (weaker versions of) the Heegner point main conjecture and the anticyclotomic main conjecture to the structure of p∞p^\infty-Selmer groups of elliptic curves of arbitrary rank. In particular, the Heegner point main conjecture localized at the augmentation ideal implies the strong rank one pp-converse to the theorem of Gross–Zagier and Kolyvagin.
当在虚二次域 K K 上的有理椭圆曲线 E E 的根号为 - 1 -1 时,我们通过比较 Heegner 点 Kolyvagin 系统与 Kurihara 数字,描述了对 Gross-Zagier 公式的 Kolyvagin 系统理论改进。当 K K 上 E E 的根号为 1 时,我们首先建立 K K 上 E E 的 p ∞ p^infty -Selmer 群的结构定理。描述是由某些四元自变形式族的值给出的,而四元自变形式族是双元欧拉系统的一部分。通过将双方位欧拉系统与栗原数相比较,我们还得到了类似的沃德斯伯格公式的细化。在这两种改进中,都没有施加低解析秩假设。我们还证明了各种 "Kolyvagin 系统 "的非琐碎性与在增理想局部的相应主猜想之间的等价性。作为结果,我们得到了希格纳点主猜想和反循环主猜想在任意阶椭圆曲线的 p ∞ p^infty -Selmer 群结构中的新应用(弱化版本)。特别是,希格纳点主猜想局部化于增量理想意味着格罗斯-扎吉尔(Gross-Zagier)和科利瓦金(Kolyvagin)定理的强秩一 p p -逆定理。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.