∞局域系统的切尔-韦尔理论

IF 1.2 2区 数学 Q1 MATHEMATICS
Camilo Arias Abad, Santiago Pineda Montoya, Alexander Quintero Vélez
{"title":"∞局域系统的切尔-韦尔理论","authors":"Camilo Arias Abad, Santiago Pineda Montoya, Alexander Quintero Vélez","doi":"10.1090/tran/9068","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a compact connected Lie group with Lie algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"fraktur\">g</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that the category <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper L times bold o times bold c Subscript normal infinity Baseline left-parenthesis upper B upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"bold\">L</mml:mi> <mml:mi mathvariant=\"bold\">o</mml:mi> <mml:mi mathvariant=\"bold\">c</mml:mi> </mml:mrow> </mml:mrow> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msub> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>B</mml:mi> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {\\mathbf {Loc}} _\\infty (BG)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal infinity\"> <mml:semantics> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-local systems on the classifying space of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be described infinitesimally as the category <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper I bold n bold f bold upper L bold o bold c Subscript normal infinity Baseline left-parenthesis German g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"bold\">I</mml:mi> <mml:mi mathvariant=\"bold\">n</mml:mi> <mml:mi mathvariant=\"bold\">f</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"bold\">L</mml:mi> <mml:mi mathvariant=\"bold\">o</mml:mi> <mml:mi mathvariant=\"bold\">c</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"fraktur\">g</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{\\operatorname {\\mathbf {Inf}\\mathbf {Loc}}} _{\\infty }(\\mathfrak {g})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of basic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"fraktur\">g</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript normal infinity\"> <mml:semantics> <mml:msub> <mml:mi>L</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">L_\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> spaces. Moreover, we show that, given a principal bundle <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi colon upper P right-arrow upper X\"> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mo>:<!-- : --></mml:mo> <mml:mi>P</mml:mi> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi>X</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi \\colon P \\to X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with structure group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and any connection <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"theta\"> <mml:semantics> <mml:mi>θ<!-- θ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\theta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\"application/x-tex\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there is a differntial graded (DG) functor <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C script upper W Subscript theta Baseline colon bold upper I bold n bold f bold upper L bold o bold c Subscript normal infinity Baseline left-parenthesis German g right-parenthesis long right-arrow bold upper L bold o bold c Subscript normal infinity Baseline left-parenthesis upper X right-parenthesis comma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">C</mml:mi> <mml:mi mathvariant=\"script\">W</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>θ<!-- θ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo>:<!-- : --></mml:mo> <mml:mrow> <mml:mi mathvariant=\"bold\">I</mml:mi> <mml:mi mathvariant=\"bold\">n</mml:mi> <mml:mi mathvariant=\"bold\">f</mml:mi> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"bold\">L</mml:mi> <mml:mi mathvariant=\"bold\">o</mml:mi> <mml:mi mathvariant=\"bold\">c</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"fraktur\">g</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">⟶<!-- ⟶ --></mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"bold\">L</mml:mi> <mml:mi mathvariant=\"bold\">o</mml:mi> <mml:mi mathvariant=\"bold\">c</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\mathscr {CW}_{\\theta } \\colon \\mathbf {Inf}\\mathbf {Loc}_{\\infty }(\\mathfrak {g}) \\longrightarrow \\mathbf {Loc}_{\\infty }(X), \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> which corresponds to the pullback functor by the classifying map of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\"application/x-tex\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The DG functors associated to different connections are related by an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript normal infinity\"> <mml:semantics> <mml:msub> <mml:mi>A</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">A_\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-natural isomorphism. This construction provides a categorification of the Chern-Weil homomorphism, which is recovered by applying the functor <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C script upper W Subscript theta\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">C</mml:mi> <mml:mi mathvariant=\"script\">W</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>θ<!-- θ --></mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathscr {CW}_{\\theta }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to the endomorphisms of the constant <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal infinity\"> <mml:semantics> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-local system.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chern-Weil theory for ∞-local systems\",\"authors\":\"Camilo Arias Abad, Santiago Pineda Montoya, Alexander Quintero Vélez\",\"doi\":\"10.1090/tran/9068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a compact connected Lie group with Lie algebra <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German g\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that the category <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"bold upper L times bold o times bold c Subscript normal infinity Baseline left-parenthesis upper B upper G right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"bold\\\">L</mml:mi> <mml:mi mathvariant=\\\"bold\\\">o</mml:mi> <mml:mi mathvariant=\\\"bold\\\">c</mml:mi> </mml:mrow> </mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:msub> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>B</mml:mi> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {\\\\mathbf {Loc}} _\\\\infty (BG)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal infinity\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-local systems on the classifying space of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be described infinitesimally as the category <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"bold upper I bold n bold f bold upper L bold o bold c Subscript normal infinity Baseline left-parenthesis German g right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"bold\\\">I</mml:mi> <mml:mi mathvariant=\\\"bold\\\">n</mml:mi> <mml:mi mathvariant=\\\"bold\\\">f</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"bold\\\">L</mml:mi> <mml:mi mathvariant=\\\"bold\\\">o</mml:mi> <mml:mi mathvariant=\\\"bold\\\">c</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\operatorname {\\\\mathbf {Inf}\\\\mathbf {Loc}}} _{\\\\infty }(\\\\mathfrak {g})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of basic <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German g\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Subscript normal infinity\\\"> <mml:semantics> <mml:msub> <mml:mi>L</mml:mi> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">L_\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> spaces. Moreover, we show that, given a principal bundle <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"pi colon upper P right-arrow upper X\\\"> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mo>:<!-- : --></mml:mo> <mml:mi>P</mml:mi> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mi>X</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\pi \\\\colon P \\\\to X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with structure group <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and any connection <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"theta\\\"> <mml:semantics> <mml:mi>θ<!-- θ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\theta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P\\\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there is a differntial graded (DG) functor <disp-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper C script upper W Subscript theta Baseline colon bold upper I bold n bold f bold upper L bold o bold c Subscript normal infinity Baseline left-parenthesis German g right-parenthesis long right-arrow bold upper L bold o bold c Subscript normal infinity Baseline left-parenthesis upper X right-parenthesis comma\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">C</mml:mi> <mml:mi mathvariant=\\\"script\\\">W</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>θ<!-- θ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo>:<!-- : --></mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"bold\\\">I</mml:mi> <mml:mi mathvariant=\\\"bold\\\">n</mml:mi> <mml:mi mathvariant=\\\"bold\\\">f</mml:mi> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"bold\\\">L</mml:mi> <mml:mi mathvariant=\\\"bold\\\">o</mml:mi> <mml:mi mathvariant=\\\"bold\\\">c</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">⟶<!-- ⟶ --></mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"bold\\\">L</mml:mi> <mml:mi mathvariant=\\\"bold\\\">o</mml:mi> <mml:mi mathvariant=\\\"bold\\\">c</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} \\\\mathscr {CW}_{\\\\theta } \\\\colon \\\\mathbf {Inf}\\\\mathbf {Loc}_{\\\\infty }(\\\\mathfrak {g}) \\\\longrightarrow \\\\mathbf {Loc}_{\\\\infty }(X), \\\\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> which corresponds to the pullback functor by the classifying map of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P\\\"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The DG functors associated to different connections are related by an <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A Subscript normal infinity\\\"> <mml:semantics> <mml:msub> <mml:mi>A</mml:mi> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">A_\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-natural isomorphism. This construction provides a categorification of the Chern-Weil homomorphism, which is recovered by applying the functor <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper C script upper W Subscript theta\\\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">C</mml:mi> <mml:mi mathvariant=\\\"script\\\">W</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>θ<!-- θ --></mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathscr {CW}_{\\\\theta }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to the endomorphisms of the constant <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal infinity\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-local system.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9068\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9068","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 G G 是一个紧凑连通的列群,其列代数为 g。我们将证明 L o c ∞ ( B G ) 的范畴 L o c ∞ ( B G ) operatorname {\mathbf {Loc}} 。G G 的分类空间上 ∞ \infty -局部系统的_{infty}(BG) 类别可以被无限小地描述为 I n f L o c ∞ ( g ) {\operatorname {\mathbf {Inf}\mathbf {Loc}}} 类。_{/infty }(\mathfrak {g}) of basic g \mathfrak {g} - L ∞ L_\infty spaces.此外,我们证明了,给定一个主束 π : P → X \pi \colon P \to X with structure group G G 和 P P 上的任意连接 θ \theta ,存在一个差分有级(DG)函子 C W θ : I n f L o c ∞ ( g ) ⟶ L o c ∞ ( X ) , \begin{equation*}\mathscr {CW}_{\theta }\colon \mathbf {Inf}\mathbf {Loc}_{\infty }(\mathfrak {g}) \longrightarrow \mathbf {Loc}_{\infty }(X), \end{equation*} 这对应于 P P 的分类映射的回拉函子。与不同连接相关联的 DG 函数通过 A ∞ A_\infty - 自然同构联系在一起。这种构造提供了切尔-韦尔同态的分类,通过将函数 C W θ \mathscr {CW}_{\theta } 应用于常数 ∞ \infty -局部系统的内同态,可以恢复切尔-韦尔同态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chern-Weil theory for ∞-local systems

Let G G be a compact connected Lie group with Lie algebra g \mathfrak {g} . We show that the category L o c ( B G ) \operatorname {\mathbf {Loc}} _\infty (BG) of \infty -local systems on the classifying space of G G can be described infinitesimally as the category I n f L o c ( g ) {\operatorname {\mathbf {Inf}\mathbf {Loc}}} _{\infty }(\mathfrak {g}) of basic g \mathfrak {g} - L L_\infty spaces. Moreover, we show that, given a principal bundle π : P X \pi \colon P \to X with structure group G G and any connection θ \theta on P P , there is a differntial graded (DG) functor C W θ : I n f L o c ( g ) L o c ( X ) , \begin{equation*} \mathscr {CW}_{\theta } \colon \mathbf {Inf}\mathbf {Loc}_{\infty }(\mathfrak {g}) \longrightarrow \mathbf {Loc}_{\infty }(X), \end{equation*} which corresponds to the pullback functor by the classifying map of P P . The DG functors associated to different connections are related by an A A_\infty -natural isomorphism. This construction provides a categorification of the Chern-Weil homomorphism, which is recovered by applying the functor C W θ \mathscr {CW}_{\theta } to the endomorphisms of the constant \infty -local system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信