渐近平坦静态流形的刚性定理及其应用

IF 1.2 2区 数学 Q1 MATHEMATICS
Brian Harvie, Ye-Kai Wang
{"title":"渐近平坦静态流形的刚性定理及其应用","authors":"Brian Harvie, Ye-Kai Wang","doi":"10.1090/tran/9134","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the Minkowski-type inequality for asymptotically flat static manifolds <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper M Superscript n Baseline comma g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(M^{n},g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with boundary and with dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than 8\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n&gt;8</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that was established by McCormick [Proc. Amer. Math. Soc. 146 (2018), pp. 4039–4046]. First, we show that any asymptotically flat static <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper M Superscript n Baseline comma g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(M^{n},g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which achieves the equality and has CMC or equipotential boundary is isometric to a rotationally symmetric region of the Schwarzschild manifold. Then, we apply conformal techniques to derive a new Minkowski-type inequality for the level sets of bounded static potentials. Taken together, these provide a robust approach to detecting rotational symmetry of asymptotically flat static systems.</p> <p>As an application, we prove global uniqueness of static metric extensions for the Bartnik data induced by both Schwarzschild coordinate spheres and Euclidean coordinate spheres in dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than 8\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n &gt; 8</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under the natural condition of <italic>Schwarzschild stability</italic>. This generalizes an earlier result of Miao [Classical Quantum Gravity 22 (2005), pp. L53–L59]. We also establish uniqueness for equipotential photon surfaces with small Einstein-Hilbert energy. This is interesting to compare with other recent uniqueness results for static photon surfaces and black holes, e.g. see V. Agostiniani and L. Mazzieri [Comm. Math. Phys. 355 (2017), pp. 261–301], C. Cederbaum and G. J. Galloway [J. Math. Phys. 62 (2021), p. 22], and S. Raulot [Classical Quantum Gravity 38 (2021), p. 22].</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"4 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rigidity theorem for asymptotically flat static manifolds and its applications\",\"authors\":\"Brian Harvie, Ye-Kai Wang\",\"doi\":\"10.1090/tran/9134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the Minkowski-type inequality for asymptotically flat static manifolds <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper M Superscript n Baseline comma g right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(M^{n},g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with boundary and with dimension <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n greater-than 8\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n&gt;8</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that was established by McCormick [Proc. Amer. Math. Soc. 146 (2018), pp. 4039–4046]. First, we show that any asymptotically flat static <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper M Superscript n Baseline comma g right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(M^{n},g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which achieves the equality and has CMC or equipotential boundary is isometric to a rotationally symmetric region of the Schwarzschild manifold. Then, we apply conformal techniques to derive a new Minkowski-type inequality for the level sets of bounded static potentials. Taken together, these provide a robust approach to detecting rotational symmetry of asymptotically flat static systems.</p> <p>As an application, we prove global uniqueness of static metric extensions for the Bartnik data induced by both Schwarzschild coordinate spheres and Euclidean coordinate spheres in dimension <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n greater-than 8\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n &gt; 8</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under the natural condition of <italic>Schwarzschild stability</italic>. This generalizes an earlier result of Miao [Classical Quantum Gravity 22 (2005), pp. L53–L59]. We also establish uniqueness for equipotential photon surfaces with small Einstein-Hilbert energy. This is interesting to compare with other recent uniqueness results for static photon surfaces and black holes, e.g. see V. Agostiniani and L. Mazzieri [Comm. Math. Phys. 355 (2017), pp. 261–301], C. Cederbaum and G. J. Galloway [J. Math. Phys. 62 (2021), p. 22], and S. Raulot [Classical Quantum Gravity 38 (2021), p. 22].</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9134\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9134","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了麦考密克建立的有边界且维数为 n > 8 n>8 的渐近平坦静态流形 ( M n , g ) (M^{n},g) 的 Minkowski 型不等式[Proc. Amer. Math. Soc. 146 (2018), pp.]首先,我们证明了任何达到相等且具有 CMC 或等势边界的渐近平坦静态 ( M n , g ) (M^{n},g) 与施瓦兹柴尔德流形的旋转对称区域是等距的。然后,我们应用保角技术为有界静态势的水平集推导出一种新的闵科夫斯基式不等式。总之,这些都为检测渐近平坦静态系统的旋转对称性提供了一种稳健的方法。作为应用,我们证明了在n > 8 n > 8维度中,在施瓦兹柴尔德稳定性的自然条件下,由施瓦兹柴尔德坐标球和欧几里得坐标球诱导的巴特尼克数据的静态度量扩展的全局唯一性。这概括了 Miao [Classical Quantum Gravity 22 (2005), pp.]我们还建立了具有小爱因斯坦-希尔伯特能量的等势光子面的唯一性。这与最近关于静态光子面和黑洞的其他唯一性结果进行了有趣的比较,例如,见 V. Agostiniani 和 L. Mazzieri [Comm. Math. Phys. 355 (2017),pp. 261-301],C. Cederbaum 和 G. J. Galloway [J. Math. Phys. 62 (2021),p. 22],以及 S. Raulot [Classical Quantum Gravity 38 (2021),p. 22]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rigidity theorem for asymptotically flat static manifolds and its applications

In this paper, we study the Minkowski-type inequality for asymptotically flat static manifolds ( M n , g ) (M^{n},g) with boundary and with dimension n > 8 n>8 that was established by McCormick [Proc. Amer. Math. Soc. 146 (2018), pp. 4039–4046]. First, we show that any asymptotically flat static ( M n , g ) (M^{n},g) which achieves the equality and has CMC or equipotential boundary is isometric to a rotationally symmetric region of the Schwarzschild manifold. Then, we apply conformal techniques to derive a new Minkowski-type inequality for the level sets of bounded static potentials. Taken together, these provide a robust approach to detecting rotational symmetry of asymptotically flat static systems.

As an application, we prove global uniqueness of static metric extensions for the Bartnik data induced by both Schwarzschild coordinate spheres and Euclidean coordinate spheres in dimension n > 8 n > 8 under the natural condition of Schwarzschild stability. This generalizes an earlier result of Miao [Classical Quantum Gravity 22 (2005), pp. L53–L59]. We also establish uniqueness for equipotential photon surfaces with small Einstein-Hilbert energy. This is interesting to compare with other recent uniqueness results for static photon surfaces and black holes, e.g. see V. Agostiniani and L. Mazzieri [Comm. Math. Phys. 355 (2017), pp. 261–301], C. Cederbaum and G. J. Galloway [J. Math. Phys. 62 (2021), p. 22], and S. Raulot [Classical Quantum Gravity 38 (2021), p. 22].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信