通过圆图案之间的莫比乌斯环形变换获得 CMC-1 曲面

IF 1.2 2区 数学 Q1 MATHEMATICS
Wai Yeung Lam
{"title":"通过圆图案之间的莫比乌斯环形变换获得 CMC-1 曲面","authors":"Wai Yeung Lam","doi":"10.1090/tran/9121","DOIUrl":null,"url":null,"abstract":"<p>Given two circle patterns of the same combinatorics in the plane, the Möbius transformations mapping circumdisks of one to the other induce a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P upper S upper L left-parenthesis 2 comma double-struck upper C right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mi>S</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">PSL(2,\\mathbb {C})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-valued function on the dual graph. Such a function plays the role of an osculating Möbius transformation and induces a realization of the dual graph in hyperbolic space. We characterize the realizations and obtain a one-to-one correspondence in the cases that the two circle patterns share the same discrete conformal structure. These correspondences are analogous to the Weierstrass representation for surfaces with constant mean curvature <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H identical-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H\\equiv 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in hyperbolic space. We further establish convergence on triangular lattices.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CMC-1 surfaces via osculating Möbius transformations between circle patterns\",\"authors\":\"Wai Yeung Lam\",\"doi\":\"10.1090/tran/9121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given two circle patterns of the same combinatorics in the plane, the Möbius transformations mapping circumdisks of one to the other induce a <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P upper S upper L left-parenthesis 2 comma double-struck upper C right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mi>S</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">PSL(2,\\\\mathbb {C})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-valued function on the dual graph. Such a function plays the role of an osculating Möbius transformation and induces a realization of the dual graph in hyperbolic space. We characterize the realizations and obtain a one-to-one correspondence in the cases that the two circle patterns share the same discrete conformal structure. These correspondences are analogous to the Weierstrass representation for surfaces with constant mean curvature <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H identical-to 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">H\\\\equiv 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in hyperbolic space. We further establish convergence on triangular lattices.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9121\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9121","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定平面上相同组合的两个圆图案,将其中一个的圆盘映射到另一个的莫比乌斯变换会在对偶图上诱导出一个 P S L ( 2 , C ) PSL(2,\mathbb {C}) 值函数。这样的函数扮演着循环莫比乌斯变换的角色,并诱导出对偶图在双曲空间中的实现。我们描述了这些实现,并在两个圆图具有相同离散共形结构的情况下获得了一一对应关系。这些对应关系类似于双曲空间中具有恒定平均曲率 H ≡ 1 H\equiv 1 的曲面的魏尔斯特拉斯表示。我们进一步建立了三角网格上的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CMC-1 surfaces via osculating Möbius transformations between circle patterns

Given two circle patterns of the same combinatorics in the plane, the Möbius transformations mapping circumdisks of one to the other induce a P S L ( 2 , C ) PSL(2,\mathbb {C}) -valued function on the dual graph. Such a function plays the role of an osculating Möbius transformation and induces a realization of the dual graph in hyperbolic space. We characterize the realizations and obtain a one-to-one correspondence in the cases that the two circle patterns share the same discrete conformal structure. These correspondences are analogous to the Weierstrass representation for surfaces with constant mean curvature H 1 H\equiv 1 in hyperbolic space. We further establish convergence on triangular lattices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信