{"title":"Impact of Nigrospora oryzae-Derived Natural Products on Photosynthesis and Oxidative Stress in Eichhornia crassipes.","authors":"Chamroon Laosinwattana, Nutcha Manichart, Pattharin Wichittrakarn, Kaori Yoneyama, Montinee Teerarak, Hataichanok Passara","doi":"10.1111/ppl.70104","DOIUrl":"10.1111/ppl.70104","url":null,"abstract":"<p><p>Interest in natural herbicides has been growing due to government policies restricting synthetic herbicide use in many countries. In that regard, this study investigates the potential of Nigrospora oryzae extract as a natural herbicide against the aquatic invasive weed Eichhornia crassipes. A stable formulation was developed with a droplet size of 36.44 ± 0.36 nm and a zeta potential of -62.59 mV. Pot-based experiments revealed the N. oryzae extract induced 38.33% phytotoxicity within 24 hours, increasing to 84.72% by 28 days post-treatment. Scanning electron microscopy demonstrated morphoanatomical changes in epidermal tissue and stroma of E. crassipes, such as erosion of epicuticular waxes and degeneration of epidermis cells. The treatment significantly reduced the photosynthetic pigment content while increasing hydrogen peroxide (46.26%), malondialdehyde (17.49%), and proline (19.16%) levels, causing cellular electrolyte leakage. Activities of superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase were significantly elevated (p<0.05), indicating oxidative damage. These findings demonstrate that N. oryzae extract can disrupt growth and photosynthesis and induce oxidative stress in E. crassipes, suggesting its potential as a source of natural herbicide for industrial application.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70104"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Petronia Carillo, Jean-Christophe Avice, Marta W Vasconcelos, Patrick du Jardin, Patrick H Brown
{"title":"Biostimulants in Agriculture: Editorial.","authors":"Petronia Carillo, Jean-Christophe Avice, Marta W Vasconcelos, Patrick du Jardin, Patrick H Brown","doi":"10.1111/ppl.70046","DOIUrl":"https://doi.org/10.1111/ppl.70046","url":null,"abstract":"","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70046"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of cold resistance in tobacco varieties using JIP-test parameters and seedling growth.","authors":"Rong-Rong Xie, Shengxin Wu, Wei-Lin Huang, Yaxin Luo, Jinbin Lin, Yazhi Cheng, Jianjun Lu, Wen Yu, Songbiao Chen, Wenqing Li, Li-Song Chen","doi":"10.1111/ppl.70078","DOIUrl":"https://doi.org/10.1111/ppl.70078","url":null,"abstract":"<p><p>Cold stress (CS) is a significant natural hazard, and distinguishing between plant cold resistance and sensitivity is critical for cultivar breeding and the development of germplasm resources. This study used 205 tobacco (Nicotiana tabacum L.) varieties from around the world to investigate the changes in the chlorophyll a fluorescence (OJIP) transients, JIP-test parameters, and seedling growth caused by seven days of CS (5°C) treatment. Their cold resistance was assessed using the cold-resistant coefficient, derived from the relative growth rate of shoots, damage scores, and JIP-test parameters. The results showed that total electron carriers per reaction center (S<sub>m</sub>) and relative variable fluorescence at the I-step (V<sub>I</sub>) were better indicators of cold resistance than maximum quantum yield of photochemistry at t = 0 (F<sub>v</sub>/F<sub>m</sub>), which was widely used to assess plant cold resistance. Next, the study examined the effects of CS and subsequent recovery on OJIP transients, JIP-test parameters, and seedling growth in two highly resistant (HR) and two highly sensitive (HS) varieties to confirm the reliability of the assessment methods. The results indicated that HR varieties experienced less photoinhibitory damage to photosystem II, exhibited lower growth inhibition during CS, and showed better recovery during the recovery period compared to HS varieties. These findings suggested that the JIP-test parameters could serve as a reliable tool for assessing tobacco cold resistance and aid in selecting varieties with enhanced resilience to CS.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70078"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nasir Iqbal, Chris Brien, Nathaniel Jewell, Bettina Berger, Yi Zhou, R Ford Denison, Matthew D Denton
{"title":"Chickpea displays a temporal growth response to Mesorhizobium strains under well-watered and drought conditions.","authors":"Nasir Iqbal, Chris Brien, Nathaniel Jewell, Bettina Berger, Yi Zhou, R Ford Denison, Matthew D Denton","doi":"10.1111/ppl.70041","DOIUrl":"10.1111/ppl.70041","url":null,"abstract":"<p><p>The relative performance of rhizobial strains could depend on their resource allocation, environmental conditions, and host genotype. Here, we used a high-throughput shoot phenotyping to investigate the effects of Mesorhizobium strain on the growth dynamics, nodulation and bacteroid traits with four chickpea (Cicer arietinum) varieties grown under different water regimes in an experiment including four nitrogen sources (two Mesorhizobium strains, and two uninoculated controls: nitrogen fertilised and unfertilised) under well-watered and drought conditions. We asked three questions. Does the impact of rhizobial strains on chickpea growth change with well-watered versus drought conditions? Do Mesorhizobium strains differ in their ability to influence biomass and nodule traits of chickpea varieties under well-watered and drought conditions? Are bacteroid size and amount of polyhydroxybutyrate modified by Mesorhizobium strain, chickpea variety, water availability and their interactions? Under well-watered conditions, chickpea inoculated with CC1192 showed higher shoot growth rates than M075 and accumulated high plant biomass at harvest. Under drought conditions, however, the shoot growth rate was comparable between CC1192 and M075, with no significant difference in plant biomass and symbiotic effectiveness at harvest. Across sources of variation, plant biomass varied 3.0-fold, nodules per plant 3.9-fold, nodule dry weight 3.0-fold, symbiotic effectiveness 1.5-fold, bacteroid size 1.4-fold and bacteroid polyhydroxybutyrate 1.4-fold. Plant biomass was negatively correlated with both bacteroid size and allocation to polyhydroxybutyrate under well-watered conditions, suggesting a trade-off between plant and rhizobial fitness. This study demonstrates the need to reassess rhizobial strain effectiveness across diverse environments, recognising the dynamic nature of their interaction with host plants.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70041"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Attaullah Khan, Xue-Wei Gong, Chi Zhang, Shen-Si Liu, Guang-You Hao
{"title":"Contrasts in hydraulics underlie the divergent performances of Populus and native tree species in water-limited sandy land environments.","authors":"Attaullah Khan, Xue-Wei Gong, Chi Zhang, Shen-Si Liu, Guang-You Hao","doi":"10.1111/ppl.70075","DOIUrl":"https://doi.org/10.1111/ppl.70075","url":null,"abstract":"<p><p>Populus tree species are commonly used for creating shelter forests in vast areas of northern China, at least partially due to their fast growth. However, they are facing severe problems of decline and mortality caused by drought. In contrast, tree species native to water-limited environments usually have slow growth and are currently not commonly used in afforestation, while these species are gaining more attention in forestry for their greater resilience to drought. In Horqin Sandy Land, we conducted a comparative analysis of xylem hydraulics and associated physiological traits between six Populus tree species and six tree species native to drought-prone areas. Compared to the native species, the Populus species exhibited significantly higher stem hydraulic conductivity but lower resistance to drought-induced xylem embolism than the native tree species. The observed interspecific variations and contrasts in xylem hydraulics between the two species groups were predominantly attributed to xylem anatomical characteristics at the pit level rather than at the tissue level. In line with the divergences in hydraulics, we found significantly lower intrinsic water use efficiency (WUE<sub>i</sub>) in Populus than in the native species, suggesting that the two groups adopted relatively acquisitive and conservative water use strategies, respectively. The trade-off between hydraulic efficiency and safety, as well as that between hydraulic efficiency and WUE<sub>i</sub>, underlies the contrasts in performance between Populus species and the native tree species, that is, fast growth of Populus species but high risk of hydraulic dysfunction when facing drought, and vice versa.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70075"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Endogenous H<sub>2</sub>S promotes Arabidopsis flowering through the regulation of GA20ox4 in the gibberellin pathway.","authors":"Lijuan Xuan, Yongke Tian, Xiaoyan Chen, Le Gao, Meng Wang, Haijun Wu","doi":"10.1111/ppl.70084","DOIUrl":"https://doi.org/10.1111/ppl.70084","url":null,"abstract":"<p><p>Flowering time is a critical determinant of plant reproductive success and agricultural yield. Hydrogen sulfide (H₂S), as a signaling molecule, regulates various aspects of plant growth and development. In this study, we examined the role of endogenous H₂S in regulating flowering time in Arabidopsis. The O-acetylserine thiol lyase a1 (oasa1) mutant, which has elevated H₂S levels due to impaired OASA1 activity that catalyzes the synthesis of Cys from H<sub>2</sub>S, flowers earlier than wild type (WT). The OASA1 overexpression lines (OE-OASA1-#33/#142), characterized by reduced H₂S levels, show delayed flowering, accompanied by decreased expression of key flowering regulators, FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), and AGAMOUS-LIKE24 (AGL24). Notably, vernalization and short-day (SD) conditions did not affect their flowering patterns. Exogenous H₂S and GA₃ treatment rescued the delayed flowering phenotype of OE-OASA1-#33/#142. In oasa1, levels of GA intermediates (GA<sub>15</sub> and GA<sub>53</sub>) were elevated, while their levels were reduced in OE-OASA1-#33/#142. RT-qPCR analysis showed a significant reduction in the expression of GIBBERELLIN 20-OXIDASE 4 (GA20ox4) in OE-OASA1-#33/#142 compared to WT. Overexpression of GA20ox4 (OE-GA20ox4-#20/#30) resulted in earlier flowering and partially rescued the delayed flowering phenotype of OE-OASA1-#33/#142. Additionally, the expression of age pathway-related genes, including miRNA172b and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3/4/5/9/15 (SPL3/4/5/9/15), was significantly reduced in OE-OASA1-#33/#142 seedlings. These findings suggest that endogenous H₂S positively regulates GA20ox4 expression, thereby promoting gibberellin synthesis and advancing flowering in Arabidopsis through the GA pathway. Furthermore, the promotion of flowering by H₂S appears to be linked to the age pathway.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70084"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Salt secretion in the mangrove Avicennia marina: effects of hypersalinity.","authors":"Gonasageran Naidoo","doi":"10.1111/ppl.70105","DOIUrl":"https://doi.org/10.1111/ppl.70105","url":null,"abstract":"<p><p>The effects of salinity on the structure of salt glands and salt secretion were determined by comparing adult Avicennia marina trees growing in the field at two contrasting salinities: seawater and hypersalinity. Electron microscopy was used to determine gland frequency and ultrastructure. Ecophysiological measurements included ion analyses of soils and leaves, soil and xylem water potentials and photosynthesis. In the hypersalinity site, salt gland frequency was 47% lower than that at seawater conditions. Salt glands in the hypersalinity site were sunken within crypts, partially collapsed, degenerated, and covered with salt crystals. In the hypersalinity site, salt secretion during the day was lower than that in the seawater site by 33% (p < 0.05), while there were no differences in night secretion. In both sites, salt secretion was higher at night and lower during the day. In the hypersalinity site, the cytoplasm of the salt glands had fewer ribosomes and mitochondria and larger vacuolar and vesicular volume than at the seawater site. CO<sub>2</sub> exchange, conductance, transpiration and intrinsic Photosystem II efficiency. were significantly lower in the hypersalinity site than in the seawater site. Lower salt secretion in the hypersalinity site was probably due to lower salt gland frequency induced by xeromorphic characteristics such as smaller, thicker leaves, lower specific area, and thicker cuticles. The ecophysiological data supported the ultrastructural evidence that salt secretion is compromised by prolonged hypersalinity in adult Avicennia marina trees.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70105"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ectopic expression of LONELY GUY7 in epidermis of internodal segments for de novo shoot regeneration without phytohormone treatment in ipecac.","authors":"Karin Okazaki, Wataru Katano, Kyomi Shibata, Masashi Asahina, Kazuko Koshiba-Takeuchi, Koichiro Shimomura, Mikihisa Umehara","doi":"10.1111/ppl.70023","DOIUrl":"10.1111/ppl.70023","url":null,"abstract":"<p><p>In many plant species, the application of exogenous phytohormones is crucial for initiating de novo shoot regeneration. However, ipecac [Carapichea ipecacuanha (Brot) L. Andersson] has a unique ability to develop adventitious shoots on the epidermis of internodal segments without phytohormone treatment. This characteristic allows us to evaluate the effects of endogenous phytohormones in this species. Here, we showed that the presence of the pith, including vascular bundles in the internodal segment, is required to activate both endogenous cytokinin (CK) biosynthesis and adventitious shoot formation. Adventitious shoots were mainly formed in the apical region of internodal segments, where the CK biosynthesis genes ISOPENTENYL TRANSFERASE 3 (CiIPT3) and LONELY GUY 7 (CiLOG7) were spontaneously upregulated in the early culture stage on phytohormone-free medium. In addition, CiIPT3 and CiLOG7 were respectively expressed in the pith and the epidermis of the internodal segments. The expression of CiLOG7 was localized as several spots on the epidermis. These findings suggest that CK precursors are generated in the pith, transferred to the epidermis, and then converted into active CKs, facilitating adventitious shoot formation on the epidermis. Conversely, auxin levels rapidly decreased during culture and remained low in the region of shoot formation. Auxin is transferred to the basal region of internodal segments, and strongly suppressed the CiLOG7 expression and decreased the CK levels. Thus, we conclude that the ectopic expression of CiLOG7 in the epidermis of internodal segments contributes to de novo shoot regeneration in ipecac.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70023"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670440/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingyang Xu, Shan He, He Zhang, Siyang Gao, Mingxin Yin, Xinyue Li, Guodong Du
{"title":"Gibberellin regulates the synthesis of stone cells in 'Nanguo' pear via the PuMYB91-PuERF023 module.","authors":"Mingyang Xu, Shan He, He Zhang, Siyang Gao, Mingxin Yin, Xinyue Li, Guodong Du","doi":"10.1111/ppl.70074","DOIUrl":"https://doi.org/10.1111/ppl.70074","url":null,"abstract":"<p><p>Stone cells are one of the limiting factors affecting pear fruit quality and commodity value. The formation of stone cell is highly correlated with lignin deposition. However, the molecular mechanism of stone cell formation and regulation is still unclear. Here, we observed that exogenous application of GA significantly inhibited the formation of stone cells and also decreased the content of lignin in 'Nanguo' (Pyrus ussuriensis) pear fruits. The key gene PuPRX73 involved in the lignin synthesis pathway was further identified using RT-PCR, and GA-treatment significantly inhibited the expression of PuPRX73. Overexpression or silencing of PuPRX73 in pear fruits significantly increases or decreases the content of stone cells and lignin. We identified the transcription factors PuMYB91 and PuERF023 using mRNA-seq and their expression was significantly decreased after GA-treatment. Transient overexpression of PuMYB91 and PuERF023 promotes lignin and stone cells content in pear fruits, while silencing of PuMYB91 and PuERF023 led to the opposite results and inhibited the expression of PuPRX73. Yeast one-hybrid (Y1H) and GUS activity analysis revealed that PuMYB91 and PuERF023 directly bind and activate the PuPRX73 promoter, and co-transfection of PuMYB91 and PuERF023 in Nicotiana benthamiana leaves further promoted the promoter activity of PuPRX73. Furthermore, we found that PuMYB91 interacted with PuERF023 in vitro by using Yeast two-hybrid assays (Y2H). In conclusion, our results revealed that exogenous GA-treatment inhibits stone cell production by suppressing the expression of PuMYB91 and PuERF023 in pear fruits.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70074"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanshan Lu, Xiaoming Xu, Yongzhen Wu, Jun Ye, Linyan Wu, Miaomiao Nie, Shubin Sun, Wen Jing, Hui-Kyong Cho, Hatem Rouached, Luqing Zheng
{"title":"Unravelling OsPHT2;1 function in Chloroplast Phosphorus Homeostasis and Photosynthetic Efficiency under Low Phosphorus Stress in Rice.","authors":"Shanshan Lu, Xiaoming Xu, Yongzhen Wu, Jun Ye, Linyan Wu, Miaomiao Nie, Shubin Sun, Wen Jing, Hui-Kyong Cho, Hatem Rouached, Luqing Zheng","doi":"10.1111/ppl.70082","DOIUrl":"https://doi.org/10.1111/ppl.70082","url":null,"abstract":"<p><p>Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency. Our findings show that the OsPHT2;1 mutation leads to a decrease in the plastoquinone (PQ) pool size. This change is associated with altered stomatal conductance and modifications in electron transport dynamics, including an increase in the transmembrane proton gradient and a shift from linear to cyclic electron transport. This disruption significantly impairs the transport of photosynthetic products, particularly triose phosphates, essential for sucrose synthesis in the cytoplasm. Additionally, the reduced PQ pool influences the expression of key genes involved in photostability, highlighting the interplay between P homeostasis and photosynthetic regulation. By elucidating the mechanisms underlying OsPHT2;1's role in chloroplast function, our research underscores its significance in optimizing rice adaptation to low P environments, thereby enhancing crop resilience and productivity.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70082"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}