Physiologia plantarum最新文献

筛选
英文 中文
Enhancing wheat growth and nutrient content through integrated microbial and non-microbial biostimulants. 通过综合微生物和非微生物生物刺激剂提高小麦生长和养分含量。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14485
Devashish Pathak, Archna Suman, Anchal Dass, Pushpendra Sharma, Aswini Krishnan, Shrikant Gond
{"title":"Enhancing wheat growth and nutrient content through integrated microbial and non-microbial biostimulants.","authors":"Devashish Pathak, Archna Suman, Anchal Dass, Pushpendra Sharma, Aswini Krishnan, Shrikant Gond","doi":"10.1111/ppl.14485","DOIUrl":"https://doi.org/10.1111/ppl.14485","url":null,"abstract":"<p><p>This study focused on two aspects: to develop a selected functionally competent bacterial community, and its integrated with biostimulant humic acid and seaweed extract which was validated to enhance wheat growth and nutrient content. Wheat and maize-associated bacterial isolates (92) were screened for Plant Growth-Promoting traits (PGPts-72) and Community-Forming traits (CFts-66). 46 isolates possessed both kinds of traits, of which 20 isolates were chosen based on high Bonitur scale ratings. Based on metabolic diversity, growth rate, and compatibility, 11 isolates were grouped to make a synthetic microbial community (SM). Non-microbial biostimulants, humic acid (HA) and seaweed extract (SWE) were used, and 0.2% HA and 1% SWE were found to be optimal for bacterial and plant growth. SM integrated each with 0.2% HA and 1% SWE, leading to products SynBio1 (SM + HA) and SynBio2 (SM + SWE). Under microcosm study, SynBio1 and SynBio2 improved germination by 90.10% and 83.80%, respectively. SynBio1 increased chlorophyll content by 40.5 SPAD units, root length by 15.7%, and shoot length by 18.4%. Field level validations revealed that SynBio1 increased plant height by 15.76%, root length by 27.16%, and flag leaf length by 21.35% compared to the control. The grain yield with SynBio1 was 40.41% higher than that of the control. Macro and micronutrient analysis of seeds treated with SynBio1 showed significant improvements. These findings demonstrate the potential of integrating microbial communities with biostimulants, and they pave the way for developing novel bioinoculants for sustainable agriculture and promoting a healthier environment.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instantaneous growth: a compact measure of efficient carbon and nitrogen allocation in leaves and roots of C3 and C4 plants. 瞬时生长:C3 和 C4 植物叶片和根部有效碳氮分配的紧凑测量方法。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14535
Chandra Bellasio
{"title":"Instantaneous growth: a compact measure of efficient carbon and nitrogen allocation in leaves and roots of C<sub>3</sub> and C<sub>4</sub> plants.","authors":"Chandra Bellasio","doi":"10.1111/ppl.14535","DOIUrl":"https://doi.org/10.1111/ppl.14535","url":null,"abstract":"<p><p>Elucidating plant functions and identifying crop productivity bottlenecks requires the accurate quantification of their performance. This task has been attained through photosynthetic models. However, their traditional focus on the leaf's capacity to uptake CO<sub>2</sub> is becoming increasingly restrictive. Advanced bioengineering of C<sub>3</sub> plants has made it possible to increase rates of CO<sub>2</sub> assimilation by packing photosynthetic structures more densely within leaves. The operation of mechanisms that concentrate CO<sub>2</sub> inside leaves can boost rates of assimilation while requiring a lower investment in carboxylating enzymes. Therefore, whether in the context of spontaneous plants or modern manipulation, considering trade-offs in resource utilization efficiency emerges as a critical necessity. I've developed a concise and versatile analytical model that simulates concurrent leaf and root growth by balancing instantaneous fluxes of carbon and nitrogen. Carbon is made available by leaf photosynthesis, encompassing all types of biochemistries, while nitrogen is either taken up by roots or remobilized after senescence. The allocation of leaf nitrogen between light or carbon reactions was determined using a fitting algorithm: growth maximisation was the only reliable fitting goal. Both the leaf nitrogen pool and the root-to-leaf ratio responded realistically to various environmental drivers (CO<sub>2</sub> concentration, light intensity, soil nitrogen), replicating trends typically observed in plants. Furthermore, modifying the strength of CO<sub>2</sub> concentrating mechanisms proved sufficient to alter the root-to-leaf ratio between C<sub>3</sub> and C<sub>4</sub> types. This direct and mechanistic one-to-one link convincingly demonstrates, for the first time, the functional dependence of a morphological trait on a single biochemical property.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidation of AsANS controlling pigment biosynthesis in Angelica sinensis through hormonal and transcriptomic analysis. 通过激素和转录组分析阐明控制当归色素生物合成的 AsANS。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14500
Khadija Tehseen Arshad, Chunfan Xiang, Chengxiao Yuan, Lesong Li, Juan Wang, Pinhan Zhou, Nazer Manzoor, Shengchao Yang, Mengfei Li, Yanli Liang, Junwen Chen, Yan Zhao
{"title":"Elucidation of AsANS controlling pigment biosynthesis in Angelica sinensis through hormonal and transcriptomic analysis.","authors":"Khadija Tehseen Arshad, Chunfan Xiang, Chengxiao Yuan, Lesong Li, Juan Wang, Pinhan Zhou, Nazer Manzoor, Shengchao Yang, Mengfei Li, Yanli Liang, Junwen Chen, Yan Zhao","doi":"10.1111/ppl.14500","DOIUrl":"10.1111/ppl.14500","url":null,"abstract":"<p><p>Angelica sinensis, a traditional Chinese medicinal plant, has been primarily reported due to its nutritional value. Pigmentation in this plant is an important appearance trait that directly affects its commercial value. To understand the mechanism controlling purpleness in A. sinensis, hormonal and transcriptomic analyses were performed in three different tissues (leave, root and stem), using two cultivars with contrasting colors. The two-dimensional data set provides dynamic hormonal and gene expression networks underpinning purpleness in A. sinensis. We found abscisic acid as a crucial hormone modulating anthocyanin biosynthesis in A. sinensis. We further identified and validated 7 key genes involved in the anthocyanin biosynthesis pathway and found a specific module containing ANS as a hub gene in WGCNA. Overexpression of a candidate pigment regulatory gene, AsANS (AS08G02092), in transgenic calli of A. sinensis resulted in increased anthocyanin production and caused purpleness. Together, these analyses provide an important understanding of the molecular networks underlying A. sinensis anthocyanin production and its correlation with plant hormones, which can provide an important source for breeding.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the effects of azelaic acid in the metabolism of Arabidopsis thaliana seedlings through untargeted metabolomics and ionomics approaches. 通过非靶向代谢组学和离子组学方法评估壬二酸对拟南芥幼苗新陈代谢的影响
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14550
Sara Álvarez-Rodríguez, Biancamaria Senizza, Fabrizio Araniti, Luigi Lucini, Giorgio Lucchini, Adela M Sánchez-Moreiras
{"title":"Evaluating the effects of azelaic acid in the metabolism of Arabidopsis thaliana seedlings through untargeted metabolomics and ionomics approaches.","authors":"Sara Álvarez-Rodríguez, Biancamaria Senizza, Fabrizio Araniti, Luigi Lucini, Giorgio Lucchini, Adela M Sánchez-Moreiras","doi":"10.1111/ppl.14550","DOIUrl":"https://doi.org/10.1111/ppl.14550","url":null,"abstract":"<p><p>The present study demonstrates that low concentrations of azelaic acid (AZA) significantly impact the metabolism of Arabidopsis thaliana seedlings, leading to imbalances in numerous minerals and metabolites due to AZA-induced stress. Untargeted metabolomic analyses were conducted on untreated and AZA-treated seedlings at two time points: 7 and 14 days after treatment initiation. The results revealed a general accumulation of sugars (e.g., glucose, mannose, xylose), amino acids (e.g., lysine, GABA, threonine, glutamine), and organic acids (e.g., glutaric acid, shikimic acid, succinic acid) in AZA treated-seedlings, suggesting that AZA triggers stress responses in Arabidopsis. Ionomic analysis revealed that AZA induces phosphorus deficiency, which plants compensate by increasing malate content in the roots. Additionally, AZA treatment induced putrescine accumulation within the root, a metabolic biomarker of potassium deficiency and plant stress. The metabolomic profile showed elevated levels of different specialized metabolites, such as nitrogen- and sulphur-containing compounds, and altered levels of various phytohormones, including jasmonates and brassinosteroids, implicated in plant protection under biotic and/or abiotic stresses. These findings support the hypothesis that AZA's mode of action is associated with an auxin imbalance, suggesting its function as an auxinic herbicide. The observed increases in starch and jasmonates, coupled with the disruptions in potassium homeostasis, are linked to the previously reported alterations in the auxin transport, root architecture and gravitropic root response. Statistical analyses were applied, including Kruskal-Wallis tests for ionomic data, as well as multifactor analysis, Principal Component Analysis, Orthogonal Partial Least Squares-Discriminant Analysis, and enrichment pathway analysis for metabolomic data, ensuring the robustness and validity of these findings.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating wheat improvement through trait characterization: advances and perspectives. 通过性状表征加速小麦改良:进展与展望。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14544
Rajib Roychowdhury, Arindam Ghatak, Manoj Kumar, Kajal Samantara, Wolfram Weckwerth, Palak Chaturvedi
{"title":"Accelerating wheat improvement through trait characterization: advances and perspectives.","authors":"Rajib Roychowdhury, Arindam Ghatak, Manoj Kumar, Kajal Samantara, Wolfram Weckwerth, Palak Chaturvedi","doi":"10.1111/ppl.14544","DOIUrl":"https://doi.org/10.1111/ppl.14544","url":null,"abstract":"<p><p>Wheat (Triticum spp.) is a primary dietary staple food for humanity. Many wheat genetic resources with variable genomes have a record of domestication history and are widespread throughout the world. To develop elite wheat varieties, agronomical and stress-responsive trait characterization is foremost for evaluating existing germplasm to promote breeding. However, genomic complexity is one of the primary impediments to trait mining and characterization. Multiple reference genomes and cutting-edge technologies like haplotype mapping, genomic selection, precise gene editing tools, high-throughput phenotyping platforms, high-efficiency genetic transformation systems, and speed-breeding facilities are transforming wheat functional genomics research to understand the genomic diversity of polyploidy. This review focuses on the research achievements in wheat genomics, the available omics approaches, and bioinformatic resources developed in the past decades. Advances in genomics and system biology approaches are highlighted to circumvent bottlenecks in genomic and phenotypic selection, as well as gene transfer. In addition, we propose conducting precise functional genomic studies and developing sustainable breeding strategies for wheat. These developments in understanding wheat traits have speed up the creation of high-yielding, stress-resistant, and nutritionally enhanced wheat varieties, which will help in addressing global food security and agricultural sustainability in the era of climate change.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MiRNAs profiles among three poplar varieties provide insights into different molecular responses in resistance to newly emerging bacterial pathogen. 三个杨树品种的 MiRNAs 图谱揭示了抵抗新出现的细菌病原体的不同分子反应。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14498
Ruen Yu, Xiaoqian Yang, Dandan Xiao, Hai Bao, Yanwei Wang
{"title":"MiRNAs profiles among three poplar varieties provide insights into different molecular responses in resistance to newly emerging bacterial pathogen.","authors":"Ruen Yu, Xiaoqian Yang, Dandan Xiao, Hai Bao, Yanwei Wang","doi":"10.1111/ppl.14498","DOIUrl":"https://doi.org/10.1111/ppl.14498","url":null,"abstract":"<p><p>Canker caused by Lonsdalea populi has seriously reduced the economic and ecological benefits of poplar. MicroRNAs play vital roles in the response of plants to biotic stress. However, there is little research about the regulatory mechanism of miRNAs among different tree varieties upon pathogen infection. To dissect miRNAs involved in L. populi resistance, three poplar varieties, 2025 (susceptible), 107 (moderately resistant) and Populus. tomentosa cv 'henan' (resistant) were selected to elucidate the expression profiles of miRNAs using small RNA-seq. A total of 227 miRNAs were identified from all varieties. Intriguingly, miR160, miR169, miR171 and miR482b-5p were only identified in the resistant variety P. tomentosa upon pathogen infection, and these miRNAs might be important candidates for future investigation to improve the tolerance of poplar to L. populi. Among all identified miRNAs, 174 were differentially expressed in all varieties. Functional annotation analysis indicated that an array of miRNAs, including miR482, miR472, miR169, miR481, and miR172, should be involved in disease resistance and phytohormone signal transduction. Furthermore, correlation analysis of small RNA-seq and RNA-seq identified a handful of L. populi-responsive miRNAs and target genes, which exhibited that miR159 and miR172 played key roles in resistant variety P. tomentosa by targeting MYB and ERF, while miR6462c-5p and miR828 were related to the susceptibility of 2025 by targeting MYB. The comprehensive integration analysis in this research provides new insights into the regulatory pathways involved in the defence response of poplar to L. populi and offers crucial candidate miRNAs-target genes modules for poplar resistance improvement.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SUPERMAN genes: uncovering a new function in the development of complex inflorescences. 超人基因:揭示复杂花序发育过程中的新功能。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14496
Edelín Roque, Ana Lucía Rodas, José Pío Beltrán, Concepción Gómez-Mena, Luis A Cañas
{"title":"SUPERMAN genes: uncovering a new function in the development of complex inflorescences.","authors":"Edelín Roque, Ana Lucía Rodas, José Pío Beltrán, Concepción Gómez-Mena, Luis A Cañas","doi":"10.1111/ppl.14496","DOIUrl":"10.1111/ppl.14496","url":null,"abstract":"<p><p>The Arabidopsis SUPERMAN (SUP) gene and its orthologs in eudicots are crucial in regulating the number of reproductive floral organs. In Medicago truncatula, in addition to this function, a novel role in controlling meristem activity during compound inflorescence development was assigned to the SUP-ortholog (MtSUP). These findings led us to investigate whether the role of SUP genes in inflorescence development was legume-specific or could be extended to other eudicots. To assess that, we used Solanum lycopersicum as a model system with a cymose complex inflorescence and Arabidopsis thaliana as the best-known example of simple inflorescence. We conducted a detailed comparative expression analysis of SlSUP and SUP from vegetative stages to flower transition. In addition, we performed an exhaustive phenotypic characterisation of two different slsup and sup mutants during the plant life cycle. Our findings reveal that SlSUP is required for precise regulation of the meristems that control shoot and inflorescence architecture in tomato. In contrast, in Arabidopsis, SUP performs no meristematic function, but we found a role of SUP in floral transition. Our findings suggest that the functional divergence of SUP-like genes contributed to the modification of inflorescence architecture during angiosperm evolution.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network analysis of metabolomics, transcriptome and hormones reveals propionic acid-mediated novel survival strategy against drought in wheat. 代谢组学、转录组和激素的网络分析揭示了丙酸介导的小麦抗旱新生存策略。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14551
Zongzhen Li, Yanhao Lian, Hui Guo, Chenxi Li, Yongzhe Ren, Zeyu Xin, Tongbao Lin, Zhiqiang Wang
{"title":"Network analysis of metabolomics, transcriptome and hormones reveals propionic acid-mediated novel survival strategy against drought in wheat.","authors":"Zongzhen Li, Yanhao Lian, Hui Guo, Chenxi Li, Yongzhe Ren, Zeyu Xin, Tongbao Lin, Zhiqiang Wang","doi":"10.1111/ppl.14551","DOIUrl":"https://doi.org/10.1111/ppl.14551","url":null,"abstract":"<p><p>Propionic acid (PA), a low-molecular-weight organic acid, is crucial to plant life metabolism. However, the regulatory mechanism of PA-mediated drought resistance in wheat remains largely unknown. Herein, we reported on a regulatory network of PA-mediated drought resistance in wheat using integrated transcriptome and metabolomics analysis and verified genes associated with drought resistance. Compared to the water-treated group, the application of PA alleviated the damage of drought by increasing plant water content, antioxidant enzyme activities and decreasing the malondialdehyde level (MDA). Transcriptome and metabolomics analysis revealed that PA triggered upregulation of key genes and metabolites, including TaBCAT, TaALDH6A1, TaALDH7A1, TaCHI, TaFLS, chrysin, and galangin, which were involved in valine, leucine and isoleucine degradation or flavonoid biosynthesis, respectively. In addition, the expression of genes encoding auxin-related transcription factors (TFs) strikingly increased, such as auxin/indoleacetic acid (AUX/IAA) and auxin response factor (ARF). Moreover, PA activated abscisic acid (ABA) and indole-3-acetic acid (IAA) signalling pathways. Taken together, our findings suggest that PA promotes energy metabolism and antioxidant activities to confer wheat drought resistance by introducing comprehensive and systemic effects of valine, leucine and isoleucine degradation flavonoid biosynthesis. Furthermore, activated AUX/IAA and ARF TFs might serve vital roles in drought resistance via modulating IAA signalling. This study provides novel insights into PA-mediated crop resistance and the improvement of the agroecological environment.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing oilseed rape growth: Exploring the effect of foliar biostimulants on the interplay among metabolism, phenology, and yield. 优化油菜生长:探索叶面生物刺激剂对新陈代谢、物候和产量之间相互作用的影响。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14561
María Ancín, David Soba, Pedro J Picazo, Angie L Gámez, Jean-François Le Page, Diane Houdusse, Iker Aranjuelo
{"title":"Optimizing oilseed rape growth: Exploring the effect of foliar biostimulants on the interplay among metabolism, phenology, and yield.","authors":"María Ancín, David Soba, Pedro J Picazo, Angie L Gámez, Jean-François Le Page, Diane Houdusse, Iker Aranjuelo","doi":"10.1111/ppl.14561","DOIUrl":"https://doi.org/10.1111/ppl.14561","url":null,"abstract":"<p><p>The current agricultural system is in search of new strategies to achieve a more sustainable production while keeping or even increasing crop yield and quality. In this scenario, the application of biostimulants constitutes a potent solution. In the current study, the impact of a blue-green microalgal extract (MB) and a pig tissue hydrolysate (PTH) on rapeseed plants' development was characterized. Obtained results revealed a positive effect on yield parameters of plants treated with MB and, especially, PTH; this was associated to an improvement on the photosynthetic performance. Moreover, this study remarked the effects of biostimulants on plant phenology through their pivotal role in modulating developmental processes. More specifically, proteomic, metabolomic, and hormone content analyses revealed distinct alterations associated with the acceleration of phenology induced by biostimulant application. Additionally, some antioxidant enzymes and stress-related compounds were up-regulated upon MB and PTH treatments, indicating enhanced plant defense mechanisms in response to accelerated phenological transitions. Such findings highlight the intricate interplay between biostimulants and plant physiology, wherein biostimulants orchestrate rapid developmental changes, ultimately influencing growth dynamics. Altogether, the current study reveals that the application of both MB and PTH biostimulants promoted rapeseed plant phenology and productivity associated with an improvement in the photosynthetic machinery while boosting other physiological and molecular mechanisms.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The multifunctional roles of the extracellular matrix in the sessile life of the zygnematophyte Penium margaritaceum: stick, glide and cluster. 细胞外基质在紫茎藻 Penium margaritaceum 无柄生命中的多功能作用:粘附、滑行和集群。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14520
Josephine G LoRicco, Li Sun, Lindsay Bauer, Gabriel Sgambettera, Ruby Epstein, Kaylee Bagdan, Aaron Winegrad, Kattia Palacio-Lopez, Pengfei Hao, Iben Sørensen, Antony Bacic, Jocelyn K C Rose, Monika S Doblin, David S Domozych
{"title":"The multifunctional roles of the extracellular matrix in the sessile life of the zygnematophyte Penium margaritaceum: stick, glide and cluster.","authors":"Josephine G LoRicco, Li Sun, Lindsay Bauer, Gabriel Sgambettera, Ruby Epstein, Kaylee Bagdan, Aaron Winegrad, Kattia Palacio-Lopez, Pengfei Hao, Iben Sørensen, Antony Bacic, Jocelyn K C Rose, Monika S Doblin, David S Domozych","doi":"10.1111/ppl.14520","DOIUrl":"https://doi.org/10.1111/ppl.14520","url":null,"abstract":"<p><p>Adhesion and consequent adoption of a sessile habit is a common feature of many green algae and was likely a key mechanism in terrestrialization by an ancient zygnematophyte (i.e., the Zygnematophyceae, the group of algae ancestral to land plants). Penium margaritaceum is a unicellular zygnematophyte that exhibits a multistep adhesion mechanism, which leads to the establishment of the sessile habit. Based on microscopic and immunological data, a dense aggregate of fibrils containing arabinogalactan-protein (AGP)-like components covers the cell surface and is responsible for initial adhesion. The AGP-like fibrils are 20 μm in diameter and possess chemical profiles similar to land plant AGPs. The fibrils attach to the inner cell wall layers and are very likely connected to the plasma membrane as glycophosphatidylinositol (GPI) lipid-anchored proteins, as they are susceptible to phospholipase C treatment. The presence of GPI-anchored AGPs in Penium is further supported by the identification of putative Penium homologs of land plant AGP genes responsible for GPI-anchor synthesis. After adhesion, cells secrete a complex heteropolysaccharide-containing extracellular polymeric substance (EPS) that facilitates gliding motility and the formation of cell aggregates. Fucoidan-like polymers, major components of brown algal CWs, are a major constituent of both the EPS and the adhesive layer of the CW and their role in the adhesion process is still to be examined.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信