Physiologia plantarum最新文献

筛选
英文 中文
Melatonin application enhances salt stress-induced decreases in minerals, betalains, and phenolic acids in beet (Beta vulgaris L.) cultivars. 施用褪黑激素可增强盐胁迫引起的甜菜(Beta vulgaris L.)栽培品种矿物质、甜菜醛和酚酸的减少。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14611
Nesrin Colak, Ana Slatnar, Aljaz Medic, Hülya Torun, Aynur Kurt-Celebi, Gerald Dräger, Jasmin Djahandideh, Tuba Esatbeyoglu, Faik Ahmet Ayaz
{"title":"Melatonin application enhances salt stress-induced decreases in minerals, betalains, and phenolic acids in beet (Beta vulgaris L.) cultivars.","authors":"Nesrin Colak, Ana Slatnar, Aljaz Medic, Hülya Torun, Aynur Kurt-Celebi, Gerald Dräger, Jasmin Djahandideh, Tuba Esatbeyoglu, Faik Ahmet Ayaz","doi":"10.1111/ppl.14611","DOIUrl":"https://doi.org/10.1111/ppl.14611","url":null,"abstract":"<p><p>Melatonin is a potentially active signaling molecule and plays a crucial role in regulating the growth and development of plants under stress conditions, alleviating oxidative damage, enhancing antioxidant defence mechanisms and regulating ion homeostasis. This study examined the effects of exogenous melatonin application on leaf biomass, ion concentrations, betalains, phenolic acid and endogenous melatonin contents comparing red beet (Beta vulgaris L. 'Ruby Queen' and 'Scarlet Supreme') and white beet ('Rodeo' and 'Ansa') cultivars under increasing salinity levels of 50, 150, and 250 mM NaCl. Exogenous melatonin increased salinity-induced reductions in fresh and dry weights and osmotic potential in leaves. Na<sup>+</sup> concentrations rose significantly with increasing salinity, but cultivar-specific decreases were observed in K<sup>+</sup> and Ca<sup>2+</sup> concentrations. Additionally, melatonin application improved betalain, betanin and neobetanin contents induced by salt stress. Furthermore, melatonin application caused salt stress and cultivar-specific changes in phenolic acid contents e.g., ferulic acid, sinapic acid, or m-coumaric acid, in soluble free, ester- and glycoside-conjugated and cell wall-bound forms. In addition, antioxidant enzyme activities and compound contents increased significantly in the beets and were subsequently lowered in a cultivar-specific manner by salt stress + melatonin treatment. The current findings indicate that exogenous melatonin improved plant stress tolerance suppressing reactive oxygen species levels, increasing the antioxidant enzyme activities and compound contents and reducing the levels of Na<sup>+</sup>, maintaining an ionic homeostasis in the selected red and white sugar beet cultivars. It appears that melatonin application may help improve cultivar-specific salt tolerance by enhancing ion homeostasis and betalain and phenolic acid production levels in beets.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14611"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of novel inhibitors of plant GH3 IAA-amido synthetases through molecular docking studies. 通过分子对接研究鉴定植物 GH3 IAA-氨基合成酶的新型抑制剂。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14612
Adrián Luque, Clara Blanes-Mira, Lara Caballero, Purificación Andrea Martínez-Melgarejo, Miriam Nicolás-Albujer, Francisco Pérez-Alfocea, Gregorio Fernández-Ballester, José Manuel Pérez-Pérez
{"title":"Identification of novel inhibitors of plant GH3 IAA-amido synthetases through molecular docking studies.","authors":"Adrián Luque, Clara Blanes-Mira, Lara Caballero, Purificación Andrea Martínez-Melgarejo, Miriam Nicolás-Albujer, Francisco Pérez-Alfocea, Gregorio Fernández-Ballester, José Manuel Pérez-Pérez","doi":"10.1111/ppl.14612","DOIUrl":"https://doi.org/10.1111/ppl.14612","url":null,"abstract":"<p><p>Auxins play a critical role in several plant developmental processes and their endogenous levels are regulated at multiple levels. The enzymes of the GRETCHEN HAGEN 3 (GH3) protein family catalyze the conjugation of amino acids to indoleacetic acid (IAA), the major endogenous auxin. The GH3 proteins are encoded by multiple redundant genes in plant genomes, making it difficult to perform functional genetic studies to understand their role in auxin homeostasis. To address these challenges, we used a chemical approach that exploits the reaction mechanism of GH3 proteins to identify small molecule inhibitors of their activity from a defined chemical library. The study evaluated receptor-ligand complexes based on their binding energy and classified them accordingly. Docking algorithms were used to correct any deviations, resulting in a list of the most important inhibitory compounds for selected GH3 enzymes based on a normalized sum of energy. The study presents atomic details of protein-ligand interactions and quantifies the effect of several of the identified small molecule inhibitors on auxin-mediated root growth processes in Arabidopsis thaliana. The direct effect of these compounds on endogenous auxin levels was measured using appropriate auxin sensors and endogenous hormone measurements. Our study has identified novel compounds of the flavonoid biosynthetic pathway that are effective inhibitors of GH3 enzyme-mediated IAA conjugation. These compounds play a versatile role in hormone-regulated plant development and have potential applications in both basic research and agriculture.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14612"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological and transcriptomic characterization of cold acclimation in endodormant grapevine under different temperature regimes. 不同温度条件下休眠期葡萄树适应寒冷的生理和转录组学特征。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14607
Hongrui Wang, Al P Kovaleski, Jason P Londo
{"title":"Physiological and transcriptomic characterization of cold acclimation in endodormant grapevine under different temperature regimes.","authors":"Hongrui Wang, Al P Kovaleski, Jason P Londo","doi":"10.1111/ppl.14607","DOIUrl":"https://doi.org/10.1111/ppl.14607","url":null,"abstract":"<p><p>It is essential for the survival of grapevines in cool climate viticultural regions where vines properly acclimate in late fall and early winter and develop freezing tolerance. Climate change-associated abnormities in temperature during the dormant season, including oscillations between prolonged warmth in late fall and extreme cold in midwinter, impact cold acclimation and threaten the sustainability of the grape and wine industry. We conducted two experiments in controlled environment to investigate the impacts of different temperature regimes on cold acclimation ability in endodormant grapevine buds through a combination of freezing tolerance-based physiological and RNA-seq-based transcriptomic monitoring. Results show that exposure to a constant temperature, whether warm (22 and 11°C), moderate (7°C), or cool (4 and 2°C) was insufficient for triggering cold acclimation and increasing freezing tolerance in dormant buds. However, when the same buds were exposed to temperature cycling (7±5°C), acclimation occurred, and freezing tolerance was increased by 5°C. We characterized the transcriptomic response of endodormant buds to high and low temperatures and temperature cycling and identified new potential roles for the ethylene pathway, starch and sugar metabolism, phenylpropanoid regulation, and protein metabolism in the genetic control of endodormancy maintenance. Despite clear evidence of temperature-responsive transcription in endodormant buds, our current understanding of the genetic control of cold acclimation remains a challenge when generalizing across grapevine tissues and phenological stages.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14607"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-resolution gene expression atlases of two contrasting major Greek olive (Olea europaea L.) tree cultivars for oil and table olive production. 希腊油橄榄(Olea europaea L.)两个主要栽培品种的高分辨率基因表达图谱。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14600
Georgios Lagiotis, Ioanna Karamichali, Maria Astrinaki, Androniki C Bibi, Despoina Vassou, Georgia-Maria Nteve, Anastasios Kollias, Ioanna Manolikaki, Christina Skodra, Michail Michailidis, Maria Manioudaki, Marios Iakovidis, Ioannis Ganopoulos, Georgios Koubouris, Athanassios Molassiotis, Christos Bazakos, Dimitris Kafetzopoulos, Panagiotis Madesis
{"title":"High-resolution gene expression atlases of two contrasting major Greek olive (Olea europaea L.) tree cultivars for oil and table olive production.","authors":"Georgios Lagiotis, Ioanna Karamichali, Maria Astrinaki, Androniki C Bibi, Despoina Vassou, Georgia-Maria Nteve, Anastasios Kollias, Ioanna Manolikaki, Christina Skodra, Michail Michailidis, Maria Manioudaki, Marios Iakovidis, Ioannis Ganopoulos, Georgios Koubouris, Athanassios Molassiotis, Christos Bazakos, Dimitris Kafetzopoulos, Panagiotis Madesis","doi":"10.1111/ppl.14600","DOIUrl":"https://doi.org/10.1111/ppl.14600","url":null,"abstract":"<p><strong>Description of aims and systems used: </strong>Olive (Olea europea L.) is one of the most economically important tree crops worldwide, especially for the countries in the Mediterranean basin. Given the economic and nutritional importance of the crop for olive oil and drupe production, we generated transcriptional atlases for the Greek olive cultivars \"Chondrolia Chalkidikis\" and \"Koroneiki\" which have contrasting characteristics in terms of fruit development, oil production properties, and use. Our analysis involved 14 different organs, tissue types, and developmental stages, including young and mature leaves, young and mature shoots, open and closed flowers, young and mature fruits (epicarp plus mesocarp), young and mature endocarps, stalks, as well as roots. The developed gene expression atlases and the associated resources offer a comprehensive insight into comparative gene expression patterns across several organs and tissue types between significant olive tree cultivars. The comparative analyses presented in this work between the \"Koroneiki\" cultivar, which performs better in olive oil production, and the \"Chondrolia Chalkidikis,\" which grows larger fruits, will be essential for understanding the molecular mechanisms underlying olive oil production and fruit shape and size development. The developed resource is also expected to support functional genomics and molecular breeding efforts to enhance crop quality and productivity in olive trees.</p><p><strong>Outline of data resources generated: </strong>The transcriptome data were generated using paired-end Illumina Next-Generation Sequencing technologies. The sequencing yielded approximately 13 million reads per sample for \"Chondrolia Chalkidikis\" and around 24 million reads per sample for \"Koroneiki.\" The transcriptomes were comparatively analyzed to reveal tissue-specific and differentially expressed genes and co-expression gene modules within and between cultivars.</p><p><strong>Summary of key results: </strong>The comparative analysis unveiled tissue-specific and differentially expressed genes within and between cultivars. Hierarchical gene clustering revealed intra- and inter-cultivar expression patterns, particularly for the endocarp and fruit tissues relevant to olive oil production and fruit development. Additionally, genes associated with oil production and fruit size/shape development, including those in fatty acid metabolism and developmental regulation, were identified.</p><p><strong>Broader utility of the resource: </strong>To facilitate accessibility, the GrOlivedb (www.GrOlivedb.com) database was developed, housing the comprehensive transcriptomic data for all of the analyzed organs and tissue types per cultivar. This resource will be a useful molecular tool for future breeding studies in olive oil production and fruit development and a valuable resource for crop improvement.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14600"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dehydration tolerance rather than avoidance explains drought resistance in zoysiagrass. 耐脱水而非避脱水解释了紫花苜蓿的抗旱性。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14622
Emma Simpson, Eduardo J Haverroth, Matthew Taggart, Moab T Andrade, Daniel A Villegas, Esdras M Carbajal, Leonardo A Oliveira, David Suchoff, Susana Milla-Lewis, Amanda A Cardoso
{"title":"Dehydration tolerance rather than avoidance explains drought resistance in zoysiagrass.","authors":"Emma Simpson, Eduardo J Haverroth, Matthew Taggart, Moab T Andrade, Daniel A Villegas, Esdras M Carbajal, Leonardo A Oliveira, David Suchoff, Susana Milla-Lewis, Amanda A Cardoso","doi":"10.1111/ppl.14622","DOIUrl":"10.1111/ppl.14622","url":null,"abstract":"<p><p>Irrigation of grasses dominates domestic water use across the globe, and better understanding of water use and drought resistance in grasses is of undeniable importance for water conservation. Breeding programs have released cultivars with improved drought resistance, but the underlying mechanisms remain unknown. We sought to characterize the mechanisms driving drought resistance in four zoysiagrass cultivars (Lobo, Zeon, Empire, and Meyer) reported to exhibit contrasting levels of drought resistance. A dry-down was performed through deficit irrigation until 70% decline in evapotranspiration. All cultivars exhibited similar drought avoidance as they dehydrated similarly throughout the drought. Lobo and Zeon, however, exhibited a 70% decline in evapotranspiration two to three days after Empire and Meyer, thus experiencing lower water potentials. Regarding drought tolerance, Lobo and Zeon maintained higher normalized difference vegetation index (NDVI) and lower perceived canopy mortality at higher dehydration levels than Empire and Meyer. We use \"perceived\" because visual assessments of canopy mortality are influenced by drought-induced leaf rolling. During the recovery, leaves rehydrated and unrolled, so the \"actual\" canopy mortality could be evaluated. All cultivars exhibited similar mortality on the first recovery day despite Lobo and Zeon experiencing more severe dehydration. Throughout the recovery, Lobo and Empire exhibited faster re-growth and showed the lowest canopy mortality, and Lobo exhibited the highest NDVI. The improved drought resistance of Lobo and Zeon results from greater dehydration tolerance rather than avoidance. This study has implications for lawn owners selecting the best cultivars and for breeding programs aiming at improving drought resistance of zoysiagrasses.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14622"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CmPYL7 positively regulates the cold tolerance via interacting with CmPP2C24-like in oriental melon. CmPYL7通过与CmPP2C24-like相互作用正向调节东方甜瓜的耐寒性
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14628
Wei Liu, Yun Jiang, Yanling Lv, Lili Zhang, Shilei Liu, Zailiang Wang, Ming He, Jiawang Zhang
{"title":"CmPYL7 positively regulates the cold tolerance via interacting with CmPP2C24-like in oriental melon.","authors":"Wei Liu, Yun Jiang, Yanling Lv, Lili Zhang, Shilei Liu, Zailiang Wang, Ming He, Jiawang Zhang","doi":"10.1111/ppl.14628","DOIUrl":"https://doi.org/10.1111/ppl.14628","url":null,"abstract":"<p><p>Pyrabactin or Actin Resistance1/PYR1-Like/Regulatory Components of abscisic acid (ABA) Receptors (PYR/PYL/RCARs, referred to as PYLs) are direct receptors of ABA that function pivotally in the ABA-signaling pathway. Previously, we discovered that CmPYL7 was strongly upregulated by cold stress in oriental melon (Cucumis melo). In this study, we demonstrated that CmPYL7 was strongly induced by cold treatment (Cold), Cold+ABA, and Cold+fluridone (Flu, an ABA inhibitor) treatments, while the expression level of CmPYL7 under Cold+Flu is lower than that of cold treatment. Silencing CmPYL7 in oriental melon seedlings significantly decreased cold tolerance due to the reduced activities of antioxidant enzymes [superoxide dismutase (SOD); catalase (CAT), and ascorbate peroxidase (APX)] and the accumulation of H<sub>2</sub>O<sub>2</sub>, accompanied by higher electrolyte leakage and MDA content, but lower proline and soluble sugar content. In contrast, overexpressing CmPYL7 in Arabidopsis plants significantly increased cold tolerance owing to the enhanced activities of antioxidant enzymes (SOD, CAT, and APX) and limited H<sub>2</sub>O<sub>2</sub>, accompanied by lower electrolyte leakage and MDA content, but higher proline and soluble sugar contents. CmPYL7 was found to interact with CmPP2C24-like in vivo and in vitro, whose expression is downregulated under cold stress. Furthermore, silenced CmPP2C24-like in oriental melon plants significantly increased cold tolerance, exhibiting lower electrolyte leakage and MDA content and higher proline and soluble sugar contents. The activities of SOD, CAT, and APX were further enhanced and contents of H<sub>2</sub>O<sub>2</sub> were significantly limited from increasing in TRV-CmPP2C24-like seedlings. These results demonstrated that CmPYL7 functions positively in the ABA-signaling pathway to regulate cold tolerance by interacting with CmPP2C24-like protein.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14628"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does succulence in woody plants delay desiccation, and is stored water used to maintain physiological function during drought conditions? 木本植物的肉质化是否会延迟干燥,储存的水分是否用于在干旱条件下维持生理功能?
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14616
Bihan Guo, Stefan K Arndt, Rebecca E Miller, Christopher Szota, Claire Farrell
{"title":"Does succulence in woody plants delay desiccation, and is stored water used to maintain physiological function during drought conditions?","authors":"Bihan Guo, Stefan K Arndt, Rebecca E Miller, Christopher Szota, Claire Farrell","doi":"10.1111/ppl.14616","DOIUrl":"https://doi.org/10.1111/ppl.14616","url":null,"abstract":"<p><p>Succulence is a trait that describes water storage in plant organs and tissues regardless of life form. Plants use the stored water to maintain physiological function and delay desiccation. However, it is unclear whether succulence in leaves, stems and roots of woody plants delays desiccation, whether it provides 'utilizable water' to maintain physiological function, or buffers changes in water status in drying soils through capacitance. We conducted a pot dry-down experiment with nine shrub species to determine whether woody plants with greater leaf, stem, or root succulence have greater shoot utilizable water or capacitance. We also investigated whether greater succulence delays desiccation, represented by cumulative VPD, until evapotranspiration ceased or until utilizable water was exhausted. Greater leaf and stem succulence were strongly related to greater shoot utilizable water and capacitance. However, desiccation time was not delayed in plants with greater total shoot succulence, utilizable water, or capacitance. Instead, woody plants with greater root succulence had longer desiccation times. This suggests that woody plants use aboveground succulence to maintain physiological function and water status during drought, whereas root succulence extends desiccation time. Our study improves the mechanistic understanding of how woody plants use stored water to survive in dryland ecosystems.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14616"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking stomatal size and density to water use efficiency and leaf carbon isotope ratio in juvenile and mature trees. 将幼树和成年树的气孔大小和密度与水分利用效率和叶碳同位素比率联系起来。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14619
Peter Petrík, Anja Petek-Petrík, Laurent J Lamarque, Roman M Link, Pierre-André Waite, Nadine K Ruehr, Bernhard Schuldt, Vincent Maire
{"title":"Linking stomatal size and density to water use efficiency and leaf carbon isotope ratio in juvenile and mature trees.","authors":"Peter Petrík, Anja Petek-Petrík, Laurent J Lamarque, Roman M Link, Pierre-André Waite, Nadine K Ruehr, Bernhard Schuldt, Vincent Maire","doi":"10.1111/ppl.14619","DOIUrl":"https://doi.org/10.1111/ppl.14619","url":null,"abstract":"<p><p>Water-use efficiency (WUE) is affected by multiple leaf traits, including stomatal morphology. However, the impact of stomatal morphology on WUE across different ontogenetic stages of tree species is not well-documented. Here, we investigated the relationship between stomatal morphology, intrinsic water-use efficiency (iWUE) and leaf carbon isotope ratio (δ<sup>13</sup>C). We sampled 190 individuals, including juvenile and mature trees belonging to 18 temperate broadleaved tree species and 9 genera. We measured guard cell length (GCL), stomatal density (SD), specific leaf area (SLA), iWUE and bulk leaf δ<sup>13</sup>C as a proxy for long-term WUE. Leaf δ<sup>13</sup>C correlated positively with iWUE across species in both juvenile and mature trees, while GCL showed a negative and SD a positive effect on iWUE and leaf δ<sup>13</sup>C. Within species, however, only GCL was significantly associated with iWUE and leaf δ<sup>13</sup>C. SLA had a minor negative influence on iWUE and leaf δ<sup>13</sup>C, but this effect was inconsistent between juvenile and mature trees. We conclude that GCL and SD can be considered functional morphological traits related to the iWUE and leaf δ<sup>13</sup>C of trees, highlighting their potential for rapid phenotyping approaches in ecological studies.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14619"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Innovative Approach: Alleviating Cadmium Toxicity in Grapevine Seedlings Using Smoke Solution Derived from the Burning of Vineyard Pruning Waste. 创新方法:利用葡萄园修剪废料焚烧产生的烟雾溶液减轻葡萄幼苗的镉毒性。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14624
Adem Yağcı, Selda Daler, Ozkan Kaya
{"title":"An Innovative Approach: Alleviating Cadmium Toxicity in Grapevine Seedlings Using Smoke Solution Derived from the Burning of Vineyard Pruning Waste.","authors":"Adem Yağcı, Selda Daler, Ozkan Kaya","doi":"10.1111/ppl.14624","DOIUrl":"https://doi.org/10.1111/ppl.14624","url":null,"abstract":"<p><p>Although plant-derived smoke solutions (SSs) have exhibited growth-promoting properties in various plant species, their potential role in mitigating heavy metal stress, specifically in grapevines, has remained unexplored and unreported. This knowledge gap prompted the present study to evaluate the efficacy of foliar application of SSs derived from vineyard pruning waste at concentrations of 0%, 0.5%, 1%, and 2% in mitigating Cadmium (Cd) phytotoxicity in grape saplings. In our study, cadmium stress was induced by applying 10 mg/kg CdCl<sub>2</sub> to the root area of the saplings, in conjunction with fertilizers. Our findings showed that exposure to Cd toxicity impeded the growth of grapevine saplings, adversely affecting shoot and root length, as well as fresh weight. Furthermore, it resulted in a reduction in chlorophyll content, stomatal conductance, and leaf water content while significantly increasing membrane damage and lipid peroxidation. Notably, the application of 0.5% SS enhanced grapevine sapling growth and alleviated Cd stress-induced damage by more effectively regulating physiological and biochemical responses compared to the control and other concentrations. Based on our results, under Cd stress conditions, the application of 0.5% SS effectively increased chlorophyll content, relative water content (RWC), stomatal conductance (1.79 mmol.m<sup>-2</sup>.sn<sup>-1</sup>), and total phenolic content (1.89 mg.g<sup>-1</sup>), whereas it significantly reduced malondialdehyde (MDA) levels and membrane damage (1.35 nmol.g<sup>-1</sup>). Additionally, it significantly elevated the activities of antioxidant enzymes, including superoxide dismutase (SOD) (2.16 U.mg<sup>-1</sup>), catalase (CAT) (1.55 U.mg<sup>-1</sup>), and ascorbate peroxidase (APX) (3.03 U.mg<sup>-1</sup>). The study demonstrated that plant-derived SS mitigates Cd stress in grapevines by enhancing antioxidative defence mechanisms.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14624"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A QTL on chromosome 17 identified by Genome-Wide Association Mapping controls postharvest cold tolerance of Cucurbita pepo L. 通过全基因组关联图谱确定的第 17 号染色体上的一个 QTL 控制着葫芦 L. 的采后耐寒性。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14602
Alicia García, Alejandro Castro-Cegrí, Alba López, María Segura, Álvaro Benítez, Dolores Garrido, Francisco Palma, Cecilia Martínez, Manuel Jamilena
{"title":"A QTL on chromosome 17 identified by Genome-Wide Association Mapping controls postharvest cold tolerance of Cucurbita pepo L.","authors":"Alicia García, Alejandro Castro-Cegrí, Alba López, María Segura, Álvaro Benítez, Dolores Garrido, Francisco Palma, Cecilia Martínez, Manuel Jamilena","doi":"10.1111/ppl.14602","DOIUrl":"https://doi.org/10.1111/ppl.14602","url":null,"abstract":"<p><p>The worldwide cultivated Cucurbita pepo L. is one of the most diverse species in the plant kingdom. In this study, chilling tolerance over a wide range of cultivars was characterized to discover the allelic variants to improving the postharvest quality of the immature fruit during cold storage. For this purpose, fruits from 126 accessions of worldwide origin have been evaluated for weight loss and chilling injury after 3, 7 and 14 days of cold storage, classifying them into tolerant, partially tolerant, and sensitive accessions. To verify this classification, antioxidant capacity and lipid peroxidation (MDA) of contrasting accessions (tolerant vs. sensitive) were assessed. The antioxidant capacity significantly decreased during cold storage in the sensitive accessions, while it was maintained in tolerant accessions. Additionally, the sensitive accessions presented a higher accumulation of MDA during this period. Finally, a GWAS analysis using GBS data available in CuGenDBv2, combined with weight loss percentage data, led to the identification of a candidate QTL located on chromosome 17 that regulates postharvest cold tolerance in zucchini. The region contains four SNPs whose alternative alleles were significantly associated with lower weight loss percentage and chilling injury indices during cold storage. Two SNPs are located in the 3' UTR region of the gene CpERS1, a gene involved in ethylene perception. The other two SNPs generate missense mutations in the coding region of a Pectin methyl esterase inhibitor gene (CpPMI). The role of this QTL and these variants in chilling tolerance is discussed.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14602"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信