Zalán Czékus, András Kukri, Atina Martics, Boglárka Pollák, Árpád Molnár, Attila Ördög, Györgyi Váradi, László Galgóczy, Rebeka Papp, Liliána Tóth, Katalin Ágnes Kocsis, Nóra Faragó, Nikolett Bódi, Mária Bagyánszki, Gabriella Szalai, Kamirán Áron Hamow, Péter Poór
{"title":"Do guard cells have single or multiple defense mechanisms in response to flg22?","authors":"Zalán Czékus, András Kukri, Atina Martics, Boglárka Pollák, Árpád Molnár, Attila Ördög, Györgyi Váradi, László Galgóczy, Rebeka Papp, Liliána Tóth, Katalin Ágnes Kocsis, Nóra Faragó, Nikolett Bódi, Mária Bagyánszki, Gabriella Szalai, Kamirán Áron Hamow, Péter Poór","doi":"10.1111/ppl.70249","DOIUrl":"https://doi.org/10.1111/ppl.70249","url":null,"abstract":"<p><p>Bacterial flagellin (flg22) induces rapid and permanent stomatal closure. However, its local and systemic as well as tissue- and cell-specific effects are less understood. Our results show that flg22 induced local and systemic stomatal closure in intact tomato plants, which was regulated by reactive oxygen- and nitrogen species, and also affected the photosynthetic activity of guard cells but not of mesophyll cells. Interestingly, rapid and extensive local expression of Ethylene response factor 1 was observed after exposure to flg22, whereas the relative transcript levels of Defensin increased only after six hours, especially in systemic leaves. Following local and systemic ethylene emission already after one and six hours, jasmonic acid levels increased in the local leaves after six hours of flg22 treatment. Using immunohistochemical methods, significant defensin accumulation was found in the epidermis and stomata of flg22-treated leaves and above them. Immunogold labelling revealed significant levels of defensins in the cell wall of the mesophyll parenchyma and guard cells. Furthermore, single cell qRT-PCR confirmed that guard cells are able to synthesise defensins. It can be concluded that guard cells are not only involved in the first line of plant defense by regulating stomatal pore size, but can also defend themselves and the plant by producing and accumulating antimicrobial defensins where phytopathogens can penetrate.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70249"},"PeriodicalIF":5.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144015673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinícius Fernandes de Souza, Michelle Robin, Bahtijor Rasulov, Eero Talts, Eliane Gomes Alves, Bader O Almutairi, Ülo Niinemets
{"title":"High temperature acclimation of isoprene emission in date palm is associated with enhanced substrate availability and reduction in synthase activity.","authors":"Vinícius Fernandes de Souza, Michelle Robin, Bahtijor Rasulov, Eero Talts, Eliane Gomes Alves, Bader O Almutairi, Ülo Niinemets","doi":"10.1111/ppl.70256","DOIUrl":"https://doi.org/10.1111/ppl.70256","url":null,"abstract":"<p><p>Heatwaves enhance plant isoprene emissions, but the relative contributions of instantaneous temperature effects on rate-limiting enzymes and longer-term acclimation remain unclear. We explored the controls on isoprene emission by isoprene synthase (IspS) activity and MEP pathway intermediates, dimethylallyl diphosphate (DMADP) and 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MEcDP) pool size in Phoenix dactylifera cv. Medjool subjected to a temperature transient: stabilization at 25°C (Phase 1), an increase to 37°C (Phase II), and return to 25°C (Phase III). The rapid temperature rise increased isoprene emission due to immediate effects on IspS activity, followed by sustained increases driven by expanded DMADP and MEcDP pools. Upon cooling (Phase III), isoprene emissions dropped below initial levels due to reduced IspS activity, but recovered as substrate pool sizes increased. Acclimation to elevated temperature was driven by increased DMADP availability, which persisted after cooling, while slower MEcDP acclimation maintained carbon flux toward DMADP. The data indicate that the sustained moderate heat stress inhibits IspS, but increases substrate availability for isoprene synthesis. Thus, beyond the immediate IspS response, longer-term rises in isoprene emissions result from reprogrammed DMADP-consuming reactions, enhancing substrate availability. These findings provide new insight into the regulation of isoprene under thermal stress and underscore the need to integrate both intermediate pool dynamics and IspS activity into predictive models of isoprene emission and deepen our understanding of the MEP pathway's role under fluctuating environmental conditions.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70256"},"PeriodicalIF":5.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144027109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soheila Aghaei Dargiri, Shahram Naeimi, Ali Movahedi
{"title":"Exiguobacterium aurantiacum SA100 induces antioxidant enzymes and salinity tolerance gene expression in wheat.","authors":"Soheila Aghaei Dargiri, Shahram Naeimi, Ali Movahedi","doi":"10.1111/ppl.70258","DOIUrl":"https://doi.org/10.1111/ppl.70258","url":null,"abstract":"<p><p>This study evaluated the effects of Exiguobacterium aurantiacum SA100 on wheat (Triticum aestivum) growth under varying levels of salinity stress. Results indicated that SA100 significantly enhanced seed germination, root and shoot length, and fresh and dry biomass across salinity levels, particularly at 50 and 100 mM NaCl. Inoculation improved antioxidant enzyme activities (CAT, APX, POD, PPO), increased total phenolic content, and reduced oxidative damage by lowering MDA and H<sub>2</sub>O<sub>2</sub> levels under 150 mM salinity. Ionic balance was maintained, with significant increases in K<sup>+</sup>, Mg<sup>++</sup>, and Ca<sup>++</sup> and a reduction in Na<sup>+</sup> accumulation. Gene expression analysis revealed upregulation of salt-tolerance genes (NAC7, NHX1, SOS1) and downregulation of stress-responsive genes (GS1, DREB2, DHN13, WRKY32). Principal component analysis confirmed that SA100 promotes salinity tolerance by modulating both biochemical and molecular responses. These findings suggest E. aurantiacum SA100 as a promising bioinoculant for enhancing wheat resilience under salinity stress.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70258"},"PeriodicalIF":5.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144040001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review of the Chemical Composition and Biological Activities of Sugarcane: Potential Medicinal Value and Sustainable Development.","authors":"Dongdong Wang, Jiatong Zheng, Surendra Sarsaiya, Jisen Zhang","doi":"10.1111/ppl.70293","DOIUrl":"https://doi.org/10.1111/ppl.70293","url":null,"abstract":"<p><p>Sugarcane (Saccharum spp.) is an important cash crop widely grown in tropical and subtropical regions. In addition to being the main raw material for sugar and ethanol production, it is rich in a wide range of bioactive compounds with remarkable chemical diversity and biological activity. In recent years, sugarcane research has gradually increased due to the increased interest in natural medicines and functional foods. This paper reviews the chemical constituents and their potential bioactivities of sugarcane. These include flavonoids, flavonoid carbonyl glycosides, flavonols, dihydroflavonoids, dihydroflavonols, chalcones and flavanols. China's traditional Chinese medicine resources are facing serious problems in terms of sustainable development, causing a shortage aggravated by changes in the natural environment and species composition as well as uncontrolled human harvesting. Therefore, it is of great significance for the maintenance and development of traditional Chinese medicine resources to study such resources, which have medicinal value and crop potential, and discover new uses for them. In this review, we discuss the chemical composition of sugarcane and its potential bioactivities, explore its applications in the field of medicine and look for the direction of future research.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70293"},"PeriodicalIF":5.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144161047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong Cui, Yongju Zhao, Liangliang Li, Shengnan Ouyang, Mingkai Jiang, David T Tissue, Honglang Duan
{"title":"Acclimation to Warming Shapes Gas Exchange and Metabolic Responses to Heat Shock in Pinus massoniana Seedlings.","authors":"Yong Cui, Yongju Zhao, Liangliang Li, Shengnan Ouyang, Mingkai Jiang, David T Tissue, Honglang Duan","doi":"10.1111/ppl.70265","DOIUrl":"https://doi.org/10.1111/ppl.70265","url":null,"abstract":"<p><p>The sensitivity of physiological and metabolic processes in subtropical trees to temperature remains uncertain, limiting our ability to predict how subtropical forests will acclimate to future climates. In particular, our understanding of gas exchange and metabolic activity responses to warming and heat shocks is quite limited. Here, we exposed Pinus massoniana seedlings to three daytime growth temperatures (25°C, 3°C, and 35°C) for 65 days, followed by a heat shock up to 40°C, then immediately reduced to 25°C, to investigate physiological and metabolic responses. The optimal temperature of photosynthesis (T<sub>optA</sub>) did not exhibit a significant shift with warming. Metabolism acclimated to rising growth temperature, resulting in enriched levels of key metabolites (tryptophan, indole, indoleacetate, and o-Phospho-L-serine) and key pathways (tryptophan metabolism). At 25°C, leaf dark respiration (R<sub>d</sub>) decreased in warm-grown seedlings. At 40°C (heat shock period), warming reduced R<sub>d</sub>, accumulated flavonoid metabolites, and upregulated tryptophan metabolism. After recovery to 25°C, higher growth temperatures decreased the net photosynthetic rate (A<sub>sat</sub>), accumulated prenol lipid metabolites, and led to enrichment in tryptophan metabolism, flavone, and flavonol biosynthesis pathways. Our findings suggest that photosynthesis in P. massoniana seedlings exhibits limited thermal acclimation, while respiration and metabolism can acclimate under short-term warming. However, acclimation to warming altered both physiological and metabolic responses to heat shock and during the subsequent recovery phase in seedlings.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70265"},"PeriodicalIF":5.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144120576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shixiong Lu, Lili Che, Huimin Gou, Min Li, Baozhen Zeng, Juanbo Yang, Baihong Chen, Juan Mao
{"title":"Integrated Transcriptomic and Proteomic Analyses Demonstrated That MeJA-Regulated VvPAL10 Enhances Cold Tolerance in Grapevines.","authors":"Shixiong Lu, Lili Che, Huimin Gou, Min Li, Baozhen Zeng, Juanbo Yang, Baihong Chen, Juan Mao","doi":"10.1111/ppl.70299","DOIUrl":"https://doi.org/10.1111/ppl.70299","url":null,"abstract":"<p><p>Understanding the molecular mechanisms underlying cold and methyl jasmonate (MeJA) responses is vital for improving the cold tolerance of grapes. This study treated 'Pinot noir' plantlets with MeJA, screened key genes in the regulatory pathway using transcriptomics and proteomics analyses, and investigated their regulatory mechanisms under cold stress. The results showed that 50 μmol L<sup>-1</sup> MeJA significantly inhibited the growth of grape roots length, increased the endogenous MeJA content and antioxidant enzyme activities, and reduced membrane damage under cold stress. In addition, 50 μmol L<sup>-1</sup> MeJA and cold stress treatment greatly increased the number of differential genes and metabolites in the phenylalanine synthesis and hormone signal transduction pathways. The results indicated that VvPAL10, an important gene in the phenylalanine synthesis pathway, significantly improved transgenic Arabidopsis thaliana and grapevine callus tissue tolerance to low temperatures.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70299"},"PeriodicalIF":5.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144209165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Fiorillo, Michela Manai, Mauro Marra, Lorenzo Camoni
{"title":"A Biostimulant Based on Ecklonia maxima and Yeast Extract Increases the Resistance of Tomato Plants Toward Pseudomonas syringae pv. tomato DC3000.","authors":"Anna Fiorillo, Michela Manai, Mauro Marra, Lorenzo Camoni","doi":"10.1111/ppl.70301","DOIUrl":"https://doi.org/10.1111/ppl.70301","url":null,"abstract":"<p><p>Plant biostimulants represent a promising option to improve agricultural production and stress resistance while reducing the use of fertilizers and pesticides. Despite various evidence demonstrating the beneficial role of biostimulants in preventing the negative effects of abiotic stress on plants, the ability of biostimulants to bolster defense mechanisms has been brought to light only recently. In this work, the impact of a biostimulant based on Ecklonia maxima and yeast extracts (S/Y) on the response of tomato infected with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) was assessed. S/Y was selected after a screening to identify biostimulants capable of conferring resistance to Pst DC3000. S/Y boosts the early events of the plant's innate immunity. Indeed, biostimulation increased the Pst DC3000-induced oxidative burst by upregulating the NADPH oxidase/respiratory burst oxidase homolog and apoplastic class III peroxidases expression. Moreover, the deposition of callose was also promoted. Due to improved activation of early defense responses by S/Y, disease symptoms and bacterial spread 72 h after the infection were significantly reduced. Finally, levels of salicylic acid, a key hormone in plant innate immunity, were increased by S/Y, whilst those of jasmonic acid and auxin, which are negative regulators in defense responses to Pst DC3000, were hampered. Overall, these findings show that S/Y mitigates infection symptoms by acting on different defense mechanisms, thus providing evidence of the potential of the biostimulant to improve plants' response to biotic stresses.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70301"},"PeriodicalIF":5.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144180888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cong Guo, Yan Chen, Ling Wu, Yuqing Jin, Xin Huang, Qingqing Gu, Fan Cao, Peibei Ke, Ying Wang, Yujuan Li
{"title":"Genome-Wide Identification of WRKY Transcription Factors in Lagerstroemia indica and Their Involvement in Color Formation.","authors":"Cong Guo, Yan Chen, Ling Wu, Yuqing Jin, Xin Huang, Qingqing Gu, Fan Cao, Peibei Ke, Ying Wang, Yujuan Li","doi":"10.1111/ppl.70328","DOIUrl":"https://doi.org/10.1111/ppl.70328","url":null,"abstract":"<p><p>Lagerstroemia indica, a globally cultivated ornamental plant, is celebrated for its diverse flower and leaf coloration. Although WRKY transcription factors are known regulators of plant pigmentation, their roles in L. indica remain underexplored. This study systematically identified and characterized the WRKY gene family in L. indica to investigate its involvement in color formation. A total of 108 LiWRKY genes were identified in the genome, with 106 classified into three phylogenetic groups. Comprehensive bioinformatics analyses-encompassing conserved domains, phylogeny, chromosomal localization, gene duplication, conserved motifs, exon-intron structures, syntenic gene pairs, cis-acting elements, and interaction networks-uncovered evolutionary relationships and structural-functional features of the LiWRKY family. Transcriptome-based data revealed 37 LiWRKY genes linked to petal coloration. Integration of transcriptomic and metabolomic data with qPCR validation identified six LiWRKY genes as central regulators of leaf color variation. Notably, LiWRKY100 displayed distinct expression profiles across leaf color phenotypes, underscoring its critical regulatory role. These results advance the understanding of LiWRKY gene evolution, structure, and function, while demonstrating their direct contributions to both floral and foliar pigmentation. The study establishes a foundation for leveraging WRKY genes in the genetic enhancement of L. indica's ornamental traits, offering actionable targets for future breeding programs.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70328"},"PeriodicalIF":5.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144275555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploitation of volatile organic compounds for rice field insect-pest management: current status and future prospects.","authors":"Kali Prasad Pattanaik, Somanatha Jena, Arabinda Mahanty, Basana Gowda Gadratagi, Naveenkumar Patil, Govindharaj Guru-Pirasanna-Pandi, Prasanthi Golive, Shyamaranjan Das Mohapatra, Totan Adak","doi":"10.1111/ppl.70240","DOIUrl":"https://doi.org/10.1111/ppl.70240","url":null,"abstract":"<p><p>Insect pests are major biotic factors that cause significant damage to rice crops, posing a major challenge to global rice production. Synthetic pesticides are the most effective and reliable technique for pest management. However, their high cost, non-biodegradability, and adverse effects on human and environmental health have driven the search for more sustainable, eco-friendly, and economically viable alternatives. Recently, Volatile Organic Compounds (VOCs), both plant-derived or synthetically made, have emerged as a promising tool for insect pest management in diverse agricultural practices. Rice plants continuously release VOCs that facilitate tritrophic interactions among the plants, their herbivores, and the natural enemies of these herbivores, highlighting their ecological importance. VOCs are being explored as semiochemicals in pest management strategies in various crops, including rice. Although applications of VOCs remain in the laboratory stage, they hold great promise for future field implementation. This review highlights the role of rice VOCs in herbivore-natural enemy interactions and explores the factors regulating their release. It provides a comprehensive analysis of recent advancements, ongoing challenges, and prospects in using VOCs for rice pest management. Additionally, the review emphasizes the integration of VOCs with precision agriculture and genetic engineering approaches along with advanced monitoring technologies, to develop sustainable and effective pest management practices in rice agroecosystems.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70240"},"PeriodicalIF":5.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144035649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anthocyanin biosynthesis, quality, and yield in purple sweet potatoes: responses to different potassium fertilizer.","authors":"Jingwei Huang, Qiang Wang, Qingcheng Qiu, Liang Zou, Xueshan Shen, Yan Wan, Huijuan Qu","doi":"10.1111/ppl.70247","DOIUrl":"https://doi.org/10.1111/ppl.70247","url":null,"abstract":"<p><p>Purple sweet potato (PSP) (Ipomoea batatas (L.) Lam) is a nutrient-rich \"K-favoring\" crop. The reasonable application of potassium is an important means of improving the quality and yield of PSP. We designed four different forms of potassium fertilizer treatments: K<sub>2</sub>SO<sub>4</sub>, KCl, KH<sub>2</sub>PO<sub>4</sub>, and K<sub>2</sub>HPO<sub>4</sub>, and used qRT-PCR and HPLC techniques to explore their differences in anthocyanin synthesis, accumulation, quality, and yield in PSP tubers. Our findings indicate that potassium fertilizer treatment enhances the expression of structural genes such as CHI (chalcone--flavonone isomerase), F3H (naringenin,2-oxogluturate 3-dioxygenase-like), F3‧H (flavonoid 3'-monooxygenase), ANS (leucoanthocyanidin dioxygenase-like), DFR (dihydroflavonol 4-reductase-like), and CHS (chalcone synthase), which encode key enzymes of the anthocyanin metabolism pathway. This is achieved by stimulating the high levels of expression of the transcription factor MYB, which controls anthocyanin accumulation. Consequently, this leads to increased activities of key anthocyanin biosynthetic enzymes Phenylalanine ammonia lyase (PAL, EC 4.3.1.5), chalcone isomerase (CHI, EC 5.5.1.6), dihydroflavonol 4-reductase (DFR, EC 1.1.1.219), and UDP-galactose flavonoid 3-O-galactosyltransferase (UFGT, EC 2.4.1.234), thereby promoting the synthesis and accumulation of anthocyanins within PSP tubers. This ultimately improves tuber quality and yield. Analysis conducted through hierarchical clustering heat map, principal component analysis (PCA), and comprehensive evaluation revealed that PSP exhibits varying sensitivities to different forms of potassium fertilizer, with KCl treatment significantly enhancing anthocyanin production efficiency. Our results will provide a theoretical basis and data support for the rational selection of potassium fertilizer types for actual PSP production.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70247"},"PeriodicalIF":5.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143975702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}