{"title":"GhRac9 improves cotton resistance to Verticillium dahliae via regulating ROS production and lignin content.","authors":"Xincheng Luo, Zongwei Hu, Longyan Chu, Jianping Li, Ziru Tang, Xiangxiang Sun, Hongliu An, Peng Wan, Xiangping Wang, Yazhen Yang, Jianmin Zhang","doi":"10.1111/ppl.70091","DOIUrl":"https://doi.org/10.1111/ppl.70091","url":null,"abstract":"<p><p>Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection. The expression level of GhRac9 peaked at 24 h after V. dahliae infection and remained consistently elevated from 24 to 48 h upon SA treatment. Furthermore, silencing GhRac9 using VIGS (Virus-induced gene silence) method attenuated cotton defense response to V. dahliae by reducing ROS (Reactive Oxygen Species) burst, peroxidase activity and lignin content in cotton plants. On the contrary, heterologous overexpression of GhRac9 enhanced Arabidopsis resistance to V. dahliae and significantly increased ROS production in Arabidopsis plants. Furthemore, transient overexpressing of GhRac9 significantly enhanced ROS burst and POD activity in cotton plants. In addition, GhRac9 positively regulated the expression levels of the genes related to SA signaling pathway in cotton plants. In conclusion, GhRac9 functioned as a positive regulator in the cotton defense response to V. dahliae, which provided important insights for breeding new cotton varieties resistant to V. dahliae.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70091"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yutong He, Keren He, Jingwen Mai, Meiyin Ou, Laibin Chen, Yuanyuan Li, Tao Wan, Luping Gu, Sergey Shabala, Xuewen Li, Yalin Li, Min Yu
{"title":"Boron controls apical dominance in Pea (Pisum sativum) via promoting polar auxin transport.","authors":"Yutong He, Keren He, Jingwen Mai, Meiyin Ou, Laibin Chen, Yuanyuan Li, Tao Wan, Luping Gu, Sergey Shabala, Xuewen Li, Yalin Li, Min Yu","doi":"10.1111/ppl.70056","DOIUrl":"https://doi.org/10.1111/ppl.70056","url":null,"abstract":"<p><p>Plant architecture and subsequent productivity are determined by the shoot apical dominance, which is disturbed by the deficiency of boron, one of the essential trace elements for plant growth and reproduction. However, the mechanism by which B controls shoot apical dominance or axillary bud outgrows under B deficiency is still unclear. This work aimed to investigate the mechanistic basis of this process, with focus on the interaction between B and polar auxin transport. Adopting an all-buds phenotyping methodology and employing several complementary approaches, we found that boron deficiency inhibited plant growth and changed the shoot architecture, resulting in the outgrowth of axillary buds at nodes 1-3. This was related to the auxin accumulation in shoot apical parts buds under B deficiency. Applying N-1-naphthylphthalamic acid to inhibit auxin transport from the shoot apex promoted the outgrowth of axillary buds in boron-sufficient (+B) plants. In decapitated plants, the application of exogenous auxin to the shoot apex only inhibited the outgrowth of axillary buds in +B plants. At higher auxin doses, the toxic effect of IAA was observed in the lower part of the shoot, which was more severe in +B plants than in B-deprived (-B) plants. Furthermore, the expression of PsPIN3 was significantly downregulated under -B conditions. These results indicate that B deficiency inhibits PAT from the apical bud through the main stem to the lower parts, leading to an increase of auxin level in the apical bud, which inhibits the growth of apical buds while stimulating the outgrowth of axillary buds.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70056"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep metabolomics revealed trajectories of jasmonate signaling-mediated primary metabolism in Arabidopsis upon Spodoptera litura herbivory.","authors":"Anish Kundu, Paramita Bera, Shruti Mishra, Jyothilakshmi Vadassery","doi":"10.1111/ppl.70035","DOIUrl":"https://doi.org/10.1111/ppl.70035","url":null,"abstract":"<p><p>Plants defend against chewing herbivores by up-regulating jasmonic acid (JA) signaling, which activates downstream signaling cascades and produces numerous secondary metabolites that act as defense molecules against the herbivores. Although secondary metabolism always remains a focus of research, primary metabolism is also reported to be realigned upon herbivory. However, JA signaling-mediated modulation of primary metabolites and their metabolic pathways in plants are mostly unexplored. Here, we applied gas chromatography-mass spectrometry-based untargeted metabolomics aided with computational statistical frameworks on wild type Arabidopsis, mutants of active JA receptor (i.e., CORONATINE-INSENSITIVE 1, COI1-1) and downstream transcription factor (i.e., MYC2) to navigate the JA signaling-mediated primary metabolism alterations during herbivory. Pathway and metabolite's chemical class enrichment analysis revealed JA signaling is crucial for constitutive as well as herbivore-induced primary metabolism and topology of their interaction networks. JA signaling majorly modulated alterations of sugars, amino acids and related metabolites. Herbivory-mediated sugar depletion and induction of methionine for aliphatic glucosinolates are also dependent on JA signaling. Taken together, our results demonstrate trails of JA signaling-mediated primary metabolic alterations associated with herbivory.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70035"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Upgrading of the genetic engineering toolkit accelerated the discovery process of the virulence effect of PsGH7d on Phytophthora sojae invasion.","authors":"Changqing Liu, Xinwei Tan, Jiayu Wang, Yujing Sun, Qian Xu, Chao Han, Qunqing Wang","doi":"10.1111/ppl.70083","DOIUrl":"https://doi.org/10.1111/ppl.70083","url":null,"abstract":"<p><p>The genus of Phytophthora includes numerous phytopathogens that have devastating impacts on agricultural production. However, the limited availability of selection markers for numerous pathogenicity pathogens of the genus Phytophthora genetic transformation hinders further research on their pathogenic functional genes. Here we report a gene of NAT I, which serves as a novel selection marker for the Phytophthora sojae transformation. Additionally, we developed a new genetic manipulation toolkit based on vectors containing NAT I, which facilitates gene editing in P. sojae. With the toolkit, the gene PsGH7d of P. sojae, which encodes a glycosyl hydrolase, was edited consecutively via the CRISPR/Cas9 system to obtain gene knockout and enzymatic active site mutation strains. The pathogenicity analysis of these transformants revealed that PsGH7d is a virulence factor dependent on its bifunctional glucanase-xylanase activities. This study develops an updated toolkit for the genus Phytophthora genetic transformation and provides initial insights into the virulence of the bifunctional enzyme PsGH7d.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70083"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Sun, Hang Shu, Duo Lu, Tao Zhang, Mingxia Li, Jixun Guo, Lianxuan Shi
{"title":"Wild soybean cotyledons at the emergence stage tolerate alkali stress by maintaining carbon and nitrogen metabolism, and accumulating organic acids.","authors":"Yang Sun, Hang Shu, Duo Lu, Tao Zhang, Mingxia Li, Jixun Guo, Lianxuan Shi","doi":"10.1111/ppl.70117","DOIUrl":"https://doi.org/10.1111/ppl.70117","url":null,"abstract":"<p><p>Soil alkalization is a global ecological problem that constrains food security and sustainable socio-economic development. As a wild relative of soybean, wild soybean (Glycine soja) exhibits strong salt and alkali stress resistance and its cotyledons play a key role during the emergence (VE) stage. This study aimed to compare variations in growth parameters, cotyledon ultrastructure, photosynthetic physiology, mineral ion and metabolite contents, and gene expression in two ecotypes of wild soybean to elucidate the regulatory mechanisms underlying alkali stress resistance in salt-tolerant wild soybean cotyledons during the VE stage. The results showed that salt-tolerant wild soybean cotyledons exhibited relatively stable growth parameters, dense and orderly chloroplast structure, high photosynthetic rates, as well as high K<sup>+</sup> and Ca<sup>2+</sup> contents under alkali stress. Metabolomics, transcriptomics, and weighted gene co-expression network analyses revealed that salt-tolerant wild soybean cotyledons adapted to alkali stress during the VE stage by enhancing photosynthetic carbon assimilation pathways, increasing methionine and proline biosynthesis, and enhancing gamma-aminobutyric acid biosynthesis, thereby maintaining a stable carbon and nitrogen balance. In addition, upregulation of the expression of ICL, MS, and ACO<sub>2</sub> led to the accumulation of various organic acids, such as pyruvic, aconitic, succinic, oxalic, malic, and fumaric acids, thereby promoting the synthesis of organic acid metabolism modules. This study provides novel insights into the key metabolic modules by which wild soybeans resist alkali stress.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70117"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aurora Lara-Núñez, Sara Margarita Garza-Aguilar, José Carlos Páez-Franco, Juan de Dios Galindo-de-la-Rosa, Vanessa Vallejo-Becerra
{"title":"The Cyclin-Dependent Kinase activity modulates the central carbon metabolism in maize during germination.","authors":"Aurora Lara-Núñez, Sara Margarita Garza-Aguilar, José Carlos Páez-Franco, Juan de Dios Galindo-de-la-Rosa, Vanessa Vallejo-Becerra","doi":"10.1111/ppl.70119","DOIUrl":"10.1111/ppl.70119","url":null,"abstract":"<p><p>The cell cycle is predominantly controlled by Cyclins/Cyclin-Dependent Kinases (Cyc/CDK) complexes, which phosphorylate targets involved in cellular proliferation. Evidence suggests that Cyc/CDK targets extend beyond traditional proteins and include enzymes that regulate the central carbon metabolism. Maize embryo axes rapidly internalize and metabolize glucose. After 24 h of imbibition in glucose-rich media, axes exhibited increased length and weight, with more pronounced effects at 72 h. This morphology enhancement was impaired when RO-3306, a specific CDK inhibitor, was added. The protein profile of maize embryo extracts at 18 and 24 h indicated altered phosphorylation patterns following CDK activity inhibition. Metabolomic analysis at 24 h of imbibition revealed that maize embryos without sugar in the media, with or without RO-3306, had a decreased sugar and amino acid content. Conversely, axes exposed to glucose demonstrated increased conversion into various mono and di-saccharides such as fructose, mannitol, galactose, and maltose but not sucrose. This pattern was reversed upon the addition of RO-3306. Glucose promoted the accumulation of amino acids such as cysteine, valine, leucine, and intermediates of the tricarboxylic acid (TCA) cycle, such as malate and citrate. The CDK inhibitor redirected the glucose metabolism toward increased serine levels, followed by other amino acids like phenylalanine, valine, and leucine. Additionally, TCA cycle intermediates and sterols significantly decreased. Overall, these results contribute to understanding the role of CDK in maize morphogenesis during germination and underscore its impact on modulating various central carbon pathways, including glycolysis, amino acid catabolism/anabolism, TCA cycle, and sterols biosynthesis.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70119"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karol Gad, Hanna Levchuk, Christian Kappel, Michael Lenhard
{"title":"Establishment of an Agrobacterium-mediated transformation system for the genetic engineering of Linum grandiflorum Desf.","authors":"Karol Gad, Hanna Levchuk, Christian Kappel, Michael Lenhard","doi":"10.1111/ppl.70059","DOIUrl":"10.1111/ppl.70059","url":null,"abstract":"<p><p>Genetic transformation is a powerful tool in plant biotechnology. However, its application is limited to species that are well-studied and easy to transform. There is a critical need to establish transformation protocols for non-model species. A stable transformation method using Agrobacterium rhizogenes for hairy root transformation and regeneration of transgenic Linum grandiflorum was established. This protocol shows the successful co-transformation of different T-DNA fragments from both the native Ri plasmid and the binary vector with the reporter gene. Hairy roots were produced after inoculation with Agrobacterium rhizogenes from which later shoots were formed from the callus, and subsequently, whole plants were regenerated. This protocol significantly facilitates genomic studies in Linum grandiflorum, particularly in investigating genes at the S-locus supergene, which are crucial for understanding self-incompatibility. Moreover, the established transformation method enables the production of hairy root lines, which can be utilized for the biosynthesis of medically useful and commercially valuable plant metabolites.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70059"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744441/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Response of an obligate CAM plant to competition and increased watering intervals.","authors":"Jingjing Fan, Zhengyu Wang, Chengyi Tu, Zhenglin Lv, Shuting Liu, Ying Fan","doi":"10.1111/ppl.70093","DOIUrl":"https://doi.org/10.1111/ppl.70093","url":null,"abstract":"<p><p>Climate change has exacerbated precipitation variability, profoundly impacting vegetation dynamics and community structures in arid ecosystems. There remains a notable knowledge gap regarding the ecological effects of altered precipitation on crassulacean acid metabolism (CAM) plants and their interactions with other photosynthetic types. This study investigated the response of the typical obligate CAM plant Orostachys fimbriata to extended watering intervals (WI4-WI8) and various competitive patterns (M<sub>1</sub>-M<sub>4</sub>) with the C<sub>3</sub> grass Melilotus officinalis and the C<sub>4</sub> grass Setaria viridis through greenhouse experiments. The results showed that: (1) In species mixtures, CAM plants had slightly reduced the total biomass (TB) compared to monocultures, yet maintained competitiveness by increasing the root-to-shoot biomass (R:S) ratio, stabilizing plant height, and sustaining their photosynthetic rates. (2) As watering intervals increased, CAM plants adapted by further elevating the R:S ratio, reducing height, and decreasing aboveground biomass. However, their height, CO<sub>2</sub> assimilation rate, and above- and below-ground biomass were significantly suppressed, particularly when coexisting with C<sub>4</sub> plants. More extreme watering regime caused a 47.6% decrease in TB of CAM plants in M<sub>4</sub>, while C<sub>3</sub> and C<sub>4</sub> grasses declined by 53.2% and 37.8%, respectively. (3) Given the predicted extension of drought intervals and the intensification of individual rainfall events under future climate conditions, the competitive pressure from C<sub>4</sub> plants with high drought tolerance and resource acquisition advantages may limit the expansion potential of CAM plants in drylands. This study enhances the understanding of adaptive mechanisms of CAM plants competing and coexisting with grasses under variable environments, providing scientific bases for predicting arid ecosystem dynamics.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70093"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claudia Egas, Gabriel Ballesteros, Cristóbal Galbán-Malagón, Thais Luarte, Sergio Guajardo-Leiva, Eduardo Castro-Nallar, Marco A Molina-Montenegro
{"title":"Fungal endophytes modulate the negative effects induced by Persistent Organic Pollutants in the antarctic plant Colobanthus quitensis.","authors":"Claudia Egas, Gabriel Ballesteros, Cristóbal Galbán-Malagón, Thais Luarte, Sergio Guajardo-Leiva, Eduardo Castro-Nallar, Marco A Molina-Montenegro","doi":"10.1111/ppl.70079","DOIUrl":"https://doi.org/10.1111/ppl.70079","url":null,"abstract":"<p><p>Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown. Moreover, fungal symbionts could modulate the effects on host plants to cope with this stress factor. This study investigates the molecular and ecophysiological responses of the Sub-Antarctic and Antarctic plant Colobanthus quitensis to POPs in different populations along a latitudinal gradient (53°- 67° S), emphasizing the role of endophytic fungi. The results show that exposure of POPs in C. quitensis generates oxidative stress and alters its ecophysiological performance. Nevertheless, C. quitensis in association with fungal endophytes and POPs exposure, shows lower lipid peroxidation, higher proline content and higher photosynthetic capacity, as well as higher biomass and survival percentage, compared to plants in the absence of fungal endophytes. On the other hand, the antarctic plant population (67°S) with endophytic fungi presents better stress modulating upon POPs exposure. Endophytic fungi would be more necessary for plant performance towards higher latitudes with extreme conditions, contributing significantly to their general functional adaptation. We develop a transcriptomics analyses n the C. quitensis-fungal endophytes association from the Peninsula population. We observed that fungal endophytes promote tolerance to POPs stress through upregulated genes for the redox regulation based on ascorbate and scavenging mechanisms (peroxidases, MDAR, VTC4, CCS), transformation (monooxygenases) and conjugation of compounds or metabolites (glutathione transferases, glycosyltransferases, S-transferases), and the storage or elimination of conjugates (ABC transporters, C and G family) that contribute to detoxification cell. This work highlights the contribution of endophytic fungi to plant resistance in situations of environmental stress, especially in extreme conditions such as in antarctica exposed to anthropogenic impact. The implications of these findings are relevant for the biosecurity of one of the last pristine bastions worldwide.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70079"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meilin He, Anita Santana-Sánchez, Gábor Szilveszter Tóth, Maria Ermakova, Darius Collard, Sergey Kosourov, Yagut Allahverdiyeva
{"title":"Deletion of Flv3A facilitates long-term H<sub>2</sub> photoproduction in diazotrophic Anabaena sp. PCC 7120.","authors":"Meilin He, Anita Santana-Sánchez, Gábor Szilveszter Tóth, Maria Ermakova, Darius Collard, Sergey Kosourov, Yagut Allahverdiyeva","doi":"10.1111/ppl.70087","DOIUrl":"https://doi.org/10.1111/ppl.70087","url":null,"abstract":"<p><p>Molecular hydrogen (H<sub>2</sub>) is a promising energy carrier, and its production by photosynthetic microorganisms holds substantial potential for advancing renewable energy generation. The nitrogenase-mediated H<sub>2</sub> production using heterocyst-forming cyanobacteria represents a promising approach, as the process utilizes light energy and photosynthetic reductants while being naturally protected from O<sub>2</sub>-rich environments by its restriction to microoxic heterocyst cells. We investigated the impact of deleting the vegetative cell-specific flavodiiron protein, Flv3A, on the long-term H<sub>2</sub> photoproduction of the model heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. The H<sub>2</sub> photoproduction response was evaluated under varying atmospheric conditions, with or without N<sub>2</sub> and O<sub>2</sub>, and compared to the ∆hupL mutant, which is deficient in the large subunit of uptake hydrogenase, and the ∆hupL/flv3A double mutant. Unlike the ΔhupL mutant, H<sub>2</sub> photoproduction in Δflv3A is not enhanced by increased nitrogenase activity or high accumulation of sugars in cells. Our results suggest that the absence of the vegetative cell-localized Flv3A positively affects H<sub>2</sub> photoproduction in heterocysts by simultaneously downregulating hupL expression and enhancing the O<sub>2</sub> tolerance of nitrogenase via a yet unexplored mechanism. These findings advance our understanding of nitrogenase-driven H<sub>2</sub> production and provide a new strategy to address key limitations in long-term photobiological H<sub>2</sub> production.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70087"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}