Jayram Bagri, Vikash Kumar Singh, Khushboo Gupta, Jeremy Dkhar, Aijaz Ahmad Wani, Mukesh Jain, Sneh Lata Singla-Pareek, Ashwani Pareek
{"title":"Integrated Metabolomic and Transcriptomic Analysis Reveals Bioactive Compound Diversity in Organs of Saffron Flower.","authors":"Jayram Bagri, Vikash Kumar Singh, Khushboo Gupta, Jeremy Dkhar, Aijaz Ahmad Wani, Mukesh Jain, Sneh Lata Singla-Pareek, Ashwani Pareek","doi":"10.1111/ppl.14598","DOIUrl":"https://doi.org/10.1111/ppl.14598","url":null,"abstract":"<p><p>Saffron stigma, derived from Crocus sativus L., has long been revered in global traditional medicine and continues to hold significant market value. However, despite the extensive focus on saffron stigma, the therapeutic potential of other floral components remains underexplored, primarily due to limited insights into their complex molecular architectures and chemical diversity. To address this gap, we performed a comprehensive metabolomic analysis of various floral organs utilizing advanced analytical platforms, including GC-MS and UPLC-MS/MS. This in-depth profiling revealed a diverse array of 248 metabolites, encompassing amino acids, sugar derivatives, fatty acids, flavonoids, vitamins, polyamines, organic acids, and a broad spectrum of secondary metabolites. Distinct correlation patterns among these metabolites were identified through PCA and PLS-DA, highlighting unique metabolomic signatures inherent to each floral organ. We further integrated these metabolomic findings with our transcriptomic data, enabling a detailed understanding of the molecular and metabolic variations across different floral organs. The pronounced abundance of differentially expressed genes and metabolites in the stamen (424), leaf (345), tepal (196), stigma (177), and corm (133) underscores the intricate regulatory networks governing source-to-sink partitioning and dynamic metabolic processes. Notably, our study identified several bioactive compounds, including crocin, picrocrocin, crocetin, safranal, cannabielsoin, quercetin, prenylnaringenin, isorhamnetin, pelargonidin, kaempferol, and gallic acid, all of which exhibit potential therapeutic properties. In conclusion, this comprehensive analysis significantly enhances our understanding of the molecular mechanisms driving the biosynthesis of apocarotenoids, cannabinoids, anthocyanins, and flavonoids in saffron, thereby providing valuable insights and paving the way for future research in this area.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14598"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lilia Bernal, Patricia Coello, Daniel Padilla-Chacón, Eleazar Martínez-Barajas
{"title":"Cytosolic fructose-1,6-bisphosphatase isoform mediates metabolic adjustments in bean fruit pericarp to support seed growth.","authors":"Lilia Bernal, Patricia Coello, Daniel Padilla-Chacón, Eleazar Martínez-Barajas","doi":"10.1111/ppl.14631","DOIUrl":"10.1111/ppl.14631","url":null,"abstract":"<p><p>Seed development requires substantial metabolic resources and is influenced by adverse environmental conditions. However, the ability of plants to produce viable seeds under restrictive conditions suggests the existence of mechanisms that make this process less sensitive to environmental stress. Uncovering their regulation could lead to the development of genotypes better adapted to stressful conditions. Plant response to stress is complex, and the contribution of organs such as the fruit pericarp to stress tolerance mechanism may have been underestimated. The bean fruit pericarp, a photosynthetic structure that contributes to seed development, can synthesize starch from surplus sucrose, which is later degraded during the rapid seed growth phase. This metabolic flexibility may be crucial for supporting seed growth when the photosynthate supply is reduced. To explore this possibility, we disrupted phloem continuity at the pedicel level in fruits about to enter the seed reserve accumulation stage. We used the capacity of the pericarp to incorporate <sup>14</sup>CO<sub>2</sub> to investigate changes in its metabolism. Our findings reveal that, in response to reduced photosynthate availability, the fruit pericarp did not increase <sup>14</sup>CO<sub>2</sub> fixation. However, the amount of <sup>14</sup>C used for starch synthesis decreased, while the proportion used for soluble sugars synthesis increased. This shift resulted in an increase in <sup>14</sup>C-products transported to seeds was accompanied by a significant increase in the activity of cytosolic fructose 1,6-bisphosphatase. Our results indicate that photosynthate restriction accelerates the degradation of pericarp storage proteins, and the increase in cFBPase activity could be crucial in converting the carbon produced in carbohydrates.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14631"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ígor Abba Arriola, Lubia Maria Guedes, Ana Silvia Franco Pinheiro Moreira, Narciso Aguilera, Rosy Mary Dos Santos Isaias, Denis Coelho de Oliveira
{"title":"Iron metabolism acts as a bridge between photosynthesis and red coloration of bud galls induced on Nothofagus obliqua (Nothofagaceae).","authors":"Ígor Abba Arriola, Lubia Maria Guedes, Ana Silvia Franco Pinheiro Moreira, Narciso Aguilera, Rosy Mary Dos Santos Isaias, Denis Coelho de Oliveira","doi":"10.1111/ppl.14651","DOIUrl":"https://doi.org/10.1111/ppl.14651","url":null,"abstract":"<p><p>Color and morphology are some of the most intriguing traits of plant galls, whose patterns resemble fruits and flowers. Many hypotheses were proposed to explain the involvement of anthocyanin accumulation with the development of red gall hues, whose mechanisms seem idiosyncratic. Anthocyanins are related to photoprotective strategies in green tissues and metal accumulation in some flowers. Despite that, the combination of such physiological phenomena has been neglected for galls, which are photosynthetic neoplasms genetically similar to reproductive organs. Here, we integrated different perspectives by measuring photosynthetic pigment and anthocyanin concentration combined with fluorescence quenching analysis, antioxidant activity assays, and histochemical elemental mapping in red and green galls induced by Espinosa nothofagi (Hymenoptera) on Nothofagus obliqua (Nothofagaceae). We found no relationship between high anthocyanin concentrations, light exposure, and red coloration in galls as anthocyanin concentrations were higher in the outermost tissues of green galls than in red galls. Red galls presented higher concentrations of total chlorophyll and lower carotenoid concentrations than green galls and leaves, which correlated with their highest photosynthetic activity and iron accumulation. The red color coincides with the accumulation of aluminum and Fe<sup>3+</sup> and the lowest antioxidant capacity in the gall outer tissue. The high antioxidant capacity of N. obliqua galls and the Fe<sup>2+</sup> and Fe<sup>3+</sup> distribution are related to high photosynthesis, Fe-use efficiency in galls, and the supply of Fe to the inducer diet. Overall, iron metabolism connects the high photosynthesis activity to the red gall color in the presence of low anthocyanin concentrations, like some flowers.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14651"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142785309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N Gesteiro, A Cao, R Santiago, P Lobagueira, S J González-Prieto, R A Malvar, A Butrón
{"title":"Effects of seed infection by Fusarium verticillioides on maize performance against Sesamia nonagrioides attack.","authors":"N Gesteiro, A Cao, R Santiago, P Lobagueira, S J González-Prieto, R A Malvar, A Butrón","doi":"10.1111/ppl.14649","DOIUrl":"10.1111/ppl.14649","url":null,"abstract":"<p><p>In maize (Zea mays L), the fungus Fusarium verticillioides can behave as a pathogen, but it is also able of asymptomatic colonization as an endophyte. Therefore, it would be of great value to identify metabolites and/or metabolic pathways implicated in mutualistic and pathogenic interactions. The objectives of the present study were: (i) to investigate the effect of seed colonization by F. verticillioides on maize growth in a group of inbreds with contrasting resistance to F. verticillioides; (ii) to know if maize priming by Fusarium seed infection affects maize response to other parasites and if these differences could depend on genotype resistance to Fusarium; and (iii) to determine which metabolites could be associated to beneficial/detrimental changes on maize performance. Targeted and untargeted metabolomic approaches were carried out to characterize the response of control and primed plants to the most common maize pest in the Mediterranean area, Sesamia nonagrioides Lefèbvre (Lepidoptera: Noctuidae). The study cannot assume a differential pattern of infection between resistant and susceptible inbreds, but seed inoculation with F. verticillioides upon infestation with S. nonagrioides, significantly altered defense metabolism in resistant inbreds. Meanwhile it also induced a lipid response in susceptible inbreds that could mediate their increased plant susceptibility to insect attack. Although an endophytic interaction between the fungus and specific genotypes cannot be proven, defense pathways were favorably altered by F. verticillioides colonization among resistant inbreds.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14649"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615131/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helena Gomes Silva, Rómulo Sobral, Ana Teresa Alhinho, Hugo Ricardo Afonso, Teresa Ribeiro, Patrícia M A Silva, Hassan Bousbaa, Leonor Morais-Cecílio, Maria Manuela Ribeiro Costa
{"title":"Genetic and epigenetic control of dormancy transitions throughout the year in the monoecious cork oak.","authors":"Helena Gomes Silva, Rómulo Sobral, Ana Teresa Alhinho, Hugo Ricardo Afonso, Teresa Ribeiro, Patrícia M A Silva, Hassan Bousbaa, Leonor Morais-Cecílio, Maria Manuela Ribeiro Costa","doi":"10.1111/ppl.14620","DOIUrl":"https://doi.org/10.1111/ppl.14620","url":null,"abstract":"<p><p>Bud dormancy plays a vital role in flowering regulation and fruit production, being highly regulated by endogenous and environmental cues. Deployment of epigenetic modifications and differential gene expression control bud dormancy/break cycles. Information on how these genetic and epigenetic mechanisms are regulated throughout the year is still scarce for temperate trees such as Quercus suber. Here, the expression levels of CENTRORADIALIS-LIKE (CENL) and DORMANCY-ASSOCIATED PROTEIN 1 (QsDYL1) during seasonal cycles of bud development, suggesting that QsCENL may be implicated in growth cessation in Q. suber and that QsDYL1 is a good dormancy marker. As gene expression can be regulated by the activity of chromatin modifiers, we have analysed the expression of these genes and the deposition of epigenetic marks in dormant versus non-dormant bud meristems. The DNA methyl transferases CHROMOMEHTYLASE 3 (QsCMT3) and METHYLTRANSFERASE 1 (QsMET1) were more expressed in the transition between dormancy to bud swelling. QsCMT3 was also highly expressed during the late stages of active bud formation. Conversely, the HISTONE ACETYLTRANSFERASE 1 (QsHAC1) was up-regulated during growth cessation and dormancy when compared to bud swelling. These results indicate that epigenetic regulation is implicated in how bud development progresses in Q. suber, which can be observed in the different profile deposition of the repressive and active marks, 5mC and H3K18Ac/H3K4me, respectively. The identification of bud-specific genetic and epigenetic profiling opens new possibilities to predict the relative rate of dormancy/growth of the bud stages, providing tools to understand how trees respond to the current challenges posed by climate change.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14620"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiuhua Gao, Hongwei Sun, Yandong Liu, Shubiao Zhang, Yu Liu, Muhammad Mobeen Tahir, Lu Tong, Pan Zhang, Turgunbayev Kubanychbek Toktonazarovich, Yanrong Lv, Juanjuan Ma, Dong Zhang, Jiangping Mao
{"title":"MdILL6 regulates xylem and vessel development to control internode elongation in spur-type apple.","authors":"Xiuhua Gao, Hongwei Sun, Yandong Liu, Shubiao Zhang, Yu Liu, Muhammad Mobeen Tahir, Lu Tong, Pan Zhang, Turgunbayev Kubanychbek Toktonazarovich, Yanrong Lv, Juanjuan Ma, Dong Zhang, Jiangping Mao","doi":"10.1111/ppl.14613","DOIUrl":"https://doi.org/10.1111/ppl.14613","url":null,"abstract":"<p><p>Spur-type varieties play an important role in facilitating high-density plantings. However, the underlying mechanisms of internode elongation in spur-type varieties are poorly understood. In this research, we investigated the morphological phenotype of annual shoots in four spur-type varieties ('Miyazak', 'Jinfu 18', 'Yanfu No. 6', and 'Liquan spur') and four standard-type varieties ('Aomorifu', 'Shou Fuji', 'Yanfu No. 10', and 'Yanfu No. 3'). Compared with standard-type varieties, spur-type varieties had a shorter shoot length, an average internode length and a smaller xylem size. The content of Jasmonic acid (JA) and Jasmonic acid isoleucine (JA-Ile) significantly increased in spur-type varieties, accompanied by an increase in the expression of JA biosynthesis and signal transduction genes. Exogenous methyl jasmonate (MeJA) inhibited plant height, xylem size, and vessel area. Additionally, we identified an IAA-Leucine Resistant1-like Hydrolase family member, MdILL6, which was highly expressed in spur-type varieties and mature stems. MdILL6 was mainly expressed in the shoot tips and stem, and its protein was located on the endoplasmic reticulum. Overexpression of MdILL6 in apple inhibited plant height and average internode length by decreasing xylem size and vessel area. Our results revealed a molecular mechanism of spur-type variety development affected by the JA pathway and suggest strategies for genetic improvement and regulation of spur-type varieties.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14613"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giulia Lauria, Costanza Ceccanti, Ermes Lo Piccolo, Hafsa El Horri, Lucia Guidi, Tracy Lawson, Marco Landi
{"title":"\"Metabolight\": how light spectra shape plant growth, development and metabolism.","authors":"Giulia Lauria, Costanza Ceccanti, Ermes Lo Piccolo, Hafsa El Horri, Lucia Guidi, Tracy Lawson, Marco Landi","doi":"10.1111/ppl.14587","DOIUrl":"https://doi.org/10.1111/ppl.14587","url":null,"abstract":"<p><p>Innovations in light technologies (i.e. Light Emitting Diodes; LED) and cover films with specific optical features (e.g. photo-selective, light-extracting) have revolutionized crop production in both protected environments and open fields. The possibility to modulate the light spectra, thereby enriching/depleting cultivated plants with targeted wavebands has attracted increasing interest from both basic and applicative research. Indeed, the light environment not only influences plant biomass production but is also a pivotal factor in shaping plant size, development and metabolism. In the last decade, the strict interdependence between specific wavebands and the accumulation of targeted secondary metabolites has been exploited to improve the quality of horticultural products. Innovation in LED lighting has also marked the improvement of streetlamp illumination, thereby posing new questions about the possible influence of light pollution on urban tree metabolism. In this case, it is urgent and challenging to propose new, less-impacting solutions by modulating streetlamp spectra in order to preserve the ecosystem services provided by urban trees. The present review critically summarizes the main recent findings related to the morpho-anatomical, physiological, and biochemical changes induced by light spectra management via different techniques in crops as well as in non-cultivated species. This review explores the following topics: (1) plant growth in monochromatic environments, (2) the use of greenhouse light supplementation, (3) the application of covering films with different properties, and (4) the drawbacks of streetlamp illumination on urban trees. Additionally, it proposes new perspectives offered by in planta photomodulation.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14587"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yutong Sun, Sixue Chen, Inga R Grin, Dmitry O Zharkov, Bing Yu, Haiying Li
{"title":"The dual role of methylglyoxal in plant stress response and regulation of DJ-1 protein.","authors":"Yutong Sun, Sixue Chen, Inga R Grin, Dmitry O Zharkov, Bing Yu, Haiying Li","doi":"10.1111/ppl.14608","DOIUrl":"10.1111/ppl.14608","url":null,"abstract":"<p><p>Methylglyoxal (MG) is a highly reactive metabolic intermediate that plays important roles in plant salt stress response. This review explores the sources of MG in plants, how salt stress promotes MG production, and the dual role of MG under salt stress conditions. Both the positive role of low concentrations of MG as a signalling molecule and the toxic effects of high concentrations of MG in plant response to salt stress are discussed. The MG detoxification pathways, especially the glyoxalase system, are described in detail. Special attention is given to the novel role of the DJ-1 protein in the glyoxalase system as glyoxalase III to remove MG, and as a deglycase to decrease glycation damage caused by MG on DNA, proteins, and other biomolecules. This review aims to provide readers with comprehensive perspectives on the functions of MG in plant salt stress response, the roles of the DJ-1 protein in MG detoxification and repair of glycation-damaged molecules, as well as the broader functional implications of MG in plant salt stress tolerance. New perspectives on maintaining plant genome stability, breeding for salt-tolerant crop varieties, and improving crop quality are discussed.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14608"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Male sterility is related to the imbalance of reactive oxygen species homeostasis in Prunus sibirica.","authors":"Xinxin Wang, Yuncheng Zhang, Wenxuan Fan, Tingting Ren, Jianhua Chen, Shengjun Dong","doi":"10.1111/ppl.14610","DOIUrl":"https://doi.org/10.1111/ppl.14610","url":null,"abstract":"<p><p>Prunus sibirica is an economically important forest tree with great development prospects. To study the mechanisms of male sterile P. sibirica, we compared the phenotypic, cytological, and physiological characteristics of male sterile clone 1 with those of male fertile clone 60. Phenotypic characteristics of male sterile P. sibirica included abnormal anther dehiscence, short and unbent filaments, and distorted pollen. Cytological features of abnormal anther development in male sterile P. sibirica emerged following the late-uninucleate stage and were characterized by delayed tapetum degeneration, delayed and limited secondary thickening of the endothecium, and incomplete mitotic division of pollen. Physiological traits of male sterile P. sibirica included excessive accumulation of reactive oxygen species (ROS) and low antioxidant enzyme activity. At the early-binucleate stage, the content of malondialdehyde, superoxide radicals, and hydrogen peroxide in male sterile clone 1 was 2.48, 1.27, and 1.34 times of those in male fertile clone 60, respectively. At the late-binucleate stage, superoxide dismutase in male sterile clone 1 was 50.48% of that in male fertile clone 60, and peroxidase activity in male sterile clone 1 was 36.62% of that in male fertile clone 60. In conclusion, we identified the characteristics and critical period of male sterility in P. sibirica, revealing the association between an imbalance in ROS homeostasis and male sterility.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14610"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dong Cheng, Huishan Qiu, Dan Zhou, Tianyu Lin, Lang Liu, Jiahui Nie, Qin He, Zhendong Tian
{"title":"Genome-wide identification and characterization of potato NRL gene family and functional analysis of StNRL-6 in response to Phytophthora infestans.","authors":"Dong Cheng, Huishan Qiu, Dan Zhou, Tianyu Lin, Lang Liu, Jiahui Nie, Qin He, Zhendong Tian","doi":"10.1111/ppl.14650","DOIUrl":"https://doi.org/10.1111/ppl.14650","url":null,"abstract":"<p><p>NPH3/RPT2-Like (NRL) proteins, as blue light receptor phototropin-interacting modules, regulate various aspects of physiological responses in light signaling. However, little information is available on NRL family members regulating plant immunity, especially concerning plants' late blight resistance to Phytophthora infestans. In this study, a systematical analysis of the potato NRL family was performed. In total, 35 StNRL genes were identified and phylogenetically classified into six subfamilies. Twelve StNRL genes were defined as seven pairs of segmental duplication, which was the major evolutionary driving force for StNRL expansion. Synteny analysis between the genomes of potato and Arabidopsis thaliana, tomato, and rice provided insights into evolutionary characteristics. Two StNRL family members, StNRL-6 and StNRL-7, interacted with the blue light photoreceptor Stphot1 and negatively regulated potato and Nicotiana benthamiana resistance against P. infestans. Moreover, the key motif RxSxS identified in the NRL family member is essential for StNRL-6 to interact with Stphot1 and enhance plant susceptibility to P. infestans. This comprehensive analysis of the StNRL family provides valuable information to elucidate key molecular mechanisms on how blue light regulates plant immunity.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14650"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142780701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}