Physiologia plantarum最新文献

筛选
英文 中文
A QTL on chromosome 17 identified by Genome-Wide Association Mapping controls postharvest cold tolerance of Cucurbita pepo L. 通过全基因组关联图谱确定的第 17 号染色体上的一个 QTL 控制着葫芦 L. 的采后耐寒性。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14602
Alicia García, Alejandro Castro-Cegrí, Alba López, María Segura, Álvaro Benítez, Dolores Garrido, Francisco Palma, Cecilia Martínez, Manuel Jamilena
{"title":"A QTL on chromosome 17 identified by Genome-Wide Association Mapping controls postharvest cold tolerance of Cucurbita pepo L.","authors":"Alicia García, Alejandro Castro-Cegrí, Alba López, María Segura, Álvaro Benítez, Dolores Garrido, Francisco Palma, Cecilia Martínez, Manuel Jamilena","doi":"10.1111/ppl.14602","DOIUrl":"10.1111/ppl.14602","url":null,"abstract":"<p><p>The worldwide cultivated Cucurbita pepo L. is one of the most diverse species in the plant kingdom. In this study, chilling tolerance over a wide range of cultivars was characterized to discover the allelic variants to improving the postharvest quality of the immature fruit during cold storage. For this purpose, fruits from 126 accessions of worldwide origin have been evaluated for weight loss and chilling injury after 3, 7 and 14 days of cold storage, classifying them into tolerant, partially tolerant, and sensitive accessions. To verify this classification, antioxidant capacity and lipid peroxidation (MDA) of contrasting accessions (tolerant vs. sensitive) were assessed. The antioxidant capacity significantly decreased during cold storage in the sensitive accessions, while it was maintained in tolerant accessions. Additionally, the sensitive accessions presented a higher accumulation of MDA during this period. Finally, a GWAS analysis using GBS data available in CuGenDBv2, combined with weight loss percentage data, led to the identification of a candidate QTL located on chromosome 17 that regulates postharvest cold tolerance in zucchini. The region contains four SNPs whose alternative alleles were significantly associated with lower weight loss percentage and chilling injury indices during cold storage. Two SNPs are located in the 3' UTR region of the gene CpERS1, a gene involved in ethylene perception. The other two SNPs generate missense mutations in the coding region of a Pectin methyl esterase inhibitor gene (CpPMI). The role of this QTL and these variants in chilling tolerance is discussed.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14602"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659804/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplay between CO2 and light governs carbon partitioning in Chlamydomonas reinhardtii. 二氧化碳和光照之间的相互作用制约着衣藻的碳分配。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14630
Luca Zuliani, Michela Cecchin, Tea Miotti, Matteo Paloschi, Stephan Cuine, Stefano Cazzaniga, Yonghua Li-Beisson, Matteo Ballottari
{"title":"Interplay between CO<sub>2</sub> and light governs carbon partitioning in Chlamydomonas reinhardtii.","authors":"Luca Zuliani, Michela Cecchin, Tea Miotti, Matteo Paloschi, Stephan Cuine, Stefano Cazzaniga, Yonghua Li-Beisson, Matteo Ballottari","doi":"10.1111/ppl.14630","DOIUrl":"10.1111/ppl.14630","url":null,"abstract":"<p><p>Increasing CO<sub>2</sub> availability is a common practice at the industrial level to trigger biomass productivity in microalgae cultures. Still, the consequences of high CO<sub>2</sub> availability in microalgal cells exposed to relatively high light require further investigation. Here, the photosynthetic, physiologic, and metabolic responses of the green microalga model Chlamydomonas reinhardtii were investigated in high or low CO<sub>2</sub> availability conditions: high CO<sub>2</sub> enabled higher biomass yields only if sufficient light energy was provided. Moreover, cells grown in high light and high CO<sub>2</sub> availability were characterized, compared to cells grown in high light and low CO<sub>2</sub>, by a relative increase of the energy-dense triacylglycerols and decreased starch accumulation per dry weight. The photosynthetic machinery adapted to the increased carbon availability, modulating Photosystem II light-harvesting efficiency and increasing Photosystem I photochemical activity, which shifted from being acceptor side to donor side limited: cells grown at high CO<sub>2</sub> availability were characterized by increased photosynthetic linear electron flow and by the onset of a balance between NAD(P)H oxidation and NAD(P)<sup>+</sup> reduction. Mitochondrial respiration was also influenced by the conditions herein applied, with reduced respiration through the cytochrome pathway compensated by increased respiration through alternative pathways, demonstrating a different use of the cellular reducing power based on carbon availability. The results suggest that at high CO<sub>2</sub> availability and high irradiance, the reducing power generated by the oxidative metabolism of photosynthates is either dissipated through alternative oxidative pathways in the mitochondria or translocated back to the chloroplasts to support carbon assimilation and energy-rich lipids accumulation.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14630"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in SWEET-mediated sugar partitioning affect photosynthesis performance and plant response to drought. SWEET 介导的糖分配变化会影响光合作用性能和植物对干旱的反应。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14623
Emilie Aubry, Gilles Clément, Elodie Gilbault, Sylvie Dinant, Rozenn Le Hir
{"title":"Changes in SWEET-mediated sugar partitioning affect photosynthesis performance and plant response to drought.","authors":"Emilie Aubry, Gilles Clément, Elodie Gilbault, Sylvie Dinant, Rozenn Le Hir","doi":"10.1111/ppl.14623","DOIUrl":"https://doi.org/10.1111/ppl.14623","url":null,"abstract":"<p><p>Sugars, produced through photosynthesis, are at the core of all organic compounds synthesized and used for plant growth and their response to environmental changes. Their production, transport, and utilization are highly regulated and integrated throughout the plant life cycle. The maintenance of sugar partitioning between the different subcellular compartments and between cells is important in adjusting the photosynthesis performance and response to abiotic constraints. We investigated the consequences of the disruption of four genes coding for SWEET sugar transporters in Arabidopsis (SWEET11, SWEET12, SWEET16, and SWEET17) on plant photosynthesis and the response to drought. Our results show that mutations in both SWEET11 and SWEET12 genes lead to an increase of cytosolic sugars in mesophyll cells and phloem parenchyma cells, which impacts several photosynthesis-related parameters. Further, our results suggest that in the swt11swt12 double mutant, the sucrose-induced feedback mechanism on stomatal closure is poorly efficient. On the other hand, changes in fructose partitioning in mesophyll and vascular cells, measured in the swt16swt17 double mutant, positively impact gas exchanges, probably through an increased starch synthesis together with higher vacuolar sugar storage. Finally, we propose that the impaired sugar partitioning, rather than the total amount of sugars observed in the quadruple mutant, is responsible for the enhanced sensitivity upon drought. This work highlights the importance of considering SWEET-mediated sugar partitioning rather than global sugar content in photosynthesis performance and plant response to drought. Such knowledge will pave the way to design new strategies to maintain plant productivity in a challenging environment.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14623"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolomic insights into the multiple stress responses of metabolites in major oilseed crops. 通过代谢组学深入了解主要油籽作物代谢物的多重胁迫反应。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14596
Habtamu Kefale, Jun You, Yanxin Zhang, Sewnet Getahun, Muez Berhe, Ahmed A Abbas, Chris O Ojiewo, Linhai Wang
{"title":"Metabolomic insights into the multiple stress responses of metabolites in major oilseed crops.","authors":"Habtamu Kefale, Jun You, Yanxin Zhang, Sewnet Getahun, Muez Berhe, Ahmed A Abbas, Chris O Ojiewo, Linhai Wang","doi":"10.1111/ppl.14596","DOIUrl":"10.1111/ppl.14596","url":null,"abstract":"<p><p>The multidimensional significance of metabolomics has gained increasing attention in oilseeds research and development. Sesame, peanut, soybean, sunflower, rapeseed, and perilla are the most important oilseed crops consumed as vegetable oils worldwide. However, multiple biotic and abiotic stressors affect metabolites essential for plant growth, development, and ecological adaptation, resulting in reduced productivity and quality. Stressors can result in dynamic changes in oilseed crops' overall performance, leading to changes in primary (ex: saccharides, lipids, organic acids, amino acids, vitamins, phytohormones, and nucleotides) and secondary (ex: flavonoids, alkaloids, phenolic acids, terpenoids, coumarins, and lignans) major metabolite classes. Those metabolites indicate plant physiological conditions and adaptation strategies to diverse biotic and abiotic stressors. Advancements in targeted and untargeted detection and quantification approaches and technologies aided metabolomics and crop improvement. This review seeks to clarify the metabolomics advancements, significant contributions of metabolites, and specific metabolites that accumulate in reaction to various stressors in oilseed crops. Considering the response of metabolites to multiple stress effects, we compiled comprehensive and combined metabolic biosynthesis pathways for six major classes. Understanding these essential metabolites and pathways can inform molecular breeding strategies to develop resilient oilseed cultivars. Hence, this review highlights metabolomics advancements and metabolites' potential roles in major oilseed crops' biotic and abiotic stress responses.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14596"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142688663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of early transcriptomic changes to diverse microbial volatiles in Arabidopsis thaliana. 拟南芥不同微生物挥发物早期转录组变化的比较。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.70002
Ching-Han Chang, Chung-Chih Huang, Pei-Yu Su, Yi-Rong Li, Yu-Shuo Chen, Chong-Yue Wang, Yuan-Yun Zhang, Hieng-Ming Ting, Hao-Jen Huang
{"title":"Comparison of early transcriptomic changes to diverse microbial volatiles in Arabidopsis thaliana.","authors":"Ching-Han Chang, Chung-Chih Huang, Pei-Yu Su, Yi-Rong Li, Yu-Shuo Chen, Chong-Yue Wang, Yuan-Yun Zhang, Hieng-Ming Ting, Hao-Jen Huang","doi":"10.1111/ppl.70002","DOIUrl":"https://doi.org/10.1111/ppl.70002","url":null,"abstract":"<p><p>Microbial volatiles organic compounds (mVOCs) play diverse roles in modulating plant growth and stress tolerance. However, the molecular responses of plants to mVOCs are largely undescribed. In this study, we examined the early transcriptomic response of Arabidopsis thaliana to two plant growth-promoting mVOCs (PGPVs) and one plant growth-inhibiting mVOC (PGIV). Our phenotype analysis showed that PGPVs from Fusarium verticillioides and Simplicillium sympodiophorum promote plant growth by affecting different organs. In particular, F. verticillioides mVOCs promote plant growth in whole seedlings, while S. sympodiophorum mVOCs increase leaf surface area. Moreover, Arabidopsis treated with the two PGPVs exhibited different growth-associated molecular responses, which corresponded to the phenotype analysis results. For instance, the FAR1 family (regulates light-associated plant development) was upregulated by F. verticillioides mVOCs, while the LBD family (regulates leaf size and shape) was enriched among S. sympodiophorum mVOC-upregulated genes. Hierarchical clustering analysis further indicated that PGPVs induced expression of growth-associated genes and suppressed expression of defense-associated genes. In contrast to the PGPV-induced transcriptional effects, PGIVs caused downregulation of growth-associated genes with coincident upregulation of defense-associated genes. Furthermore, a transcription factor (TF) enrichment analysis suggested that HSFs, NACs and WRKYs might be core regulators in the plant response towards mVOCs. In particular, WRKYs might serve as integrating nodes to regulate salicylic acid- and jasmonic acid-mediated defense responses and growth-defense trade-offs. Overall, this study provides insights into the early molecular responses of plants after mVOC exposure and suggests that these molecular responses contribute to different phenotypic responses.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e70002"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse functional interactions between ABA and ethylene in plant development and responses to stress. ABA与乙烯在植物发育和逆境响应中的多种功能相互作用。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.70000
Xu-Dong Liu, Yuan-Yuan Zeng, Md Mahadi Hasan, Shantwana Ghimire, Hui Jiang, Shi-Hua Qi, Xue-Qian Tian, Xiang-Wen Fang
{"title":"Diverse functional interactions between ABA and ethylene in plant development and responses to stress.","authors":"Xu-Dong Liu, Yuan-Yuan Zeng, Md Mahadi Hasan, Shantwana Ghimire, Hui Jiang, Shi-Hua Qi, Xue-Qian Tian, Xiang-Wen Fang","doi":"10.1111/ppl.70000","DOIUrl":"10.1111/ppl.70000","url":null,"abstract":"<p><p>Abscisic acid (ABA) and ethylene are two essential hormones that play crucial roles throughout the entire plant life cycle and in their tolerance to abiotic or biotic stress. In recent decades, increasing research has revealed that, in addition to their individual roles, these two hormones are more likely to function through their interactions, forming a complex regulatory network. More importantly, their functions change and their interactions vary from synergistic to antagonistic depending on the specific plant organ and development stage, which is less focused, compared and systematically summarized. In this review, we first introduce the general synthesis and action signaling pathways of these two plant hormones individually and their interactions in relation to seed dormancy and germination, primary root growth, shoot development, fruit ripening, leaf senescence and abscission, and stomatal movement regulation under both normal and stress conditions. A better understanding of the complex interactions between ABA and ethylene will enhance our knowledge of how plant hormones regulate development and respond to stress and may facilitate the development of crops with higher yields and greater tolerance to stressful environments through tissue-specific genetic modifications in the future.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e70000"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142838538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic-Engineering Approach to Enhance Vanillin and Phenolic Compounds in Ocimum Sanctum (CIM-Angana) via VpVAN Overexpression. 通过VpVAN过表达增强香兰素和酚类化合物的代谢工程方法
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.70005
Zakir Husain, Sana Khan, Aqib Sarfraz, Zafar Iqbal, Ashish Chandran, Kahkashan Khatoon, Gazala Parween, Farah Deeba, Shama Afroz, Feroz Khan, Ratnasekhar Ch, Laiq Ur Rahman
{"title":"Metabolic-Engineering Approach to Enhance Vanillin and Phenolic Compounds in Ocimum Sanctum (CIM-Angana) via VpVAN Overexpression.","authors":"Zakir Husain, Sana Khan, Aqib Sarfraz, Zafar Iqbal, Ashish Chandran, Kahkashan Khatoon, Gazala Parween, Farah Deeba, Shama Afroz, Feroz Khan, Ratnasekhar Ch, Laiq Ur Rahman","doi":"10.1111/ppl.70005","DOIUrl":"https://doi.org/10.1111/ppl.70005","url":null,"abstract":"<p><p>Transgenic Ocimum sanctum plants were engineered to produce vanillin by overexpressing the VpVAN gene using Agrobacterium-mediated transformation. Positive transformants developed shoots within 4-5 weeks and were transferred to a root induction medium and four independent transformants with no observed adverse effects were kept for anlysis. Quantitative RT-PCR indicated significantly higher VpVAN expression in transgenic lines AG_3 and AG_1, impacting the phenylpropanoid pathway and phenolic compound accumulation. Molecular docking studies indicated ferulic acid's higher binding affinity to vanillin synthase than eugenol. LC-MS/MS analysis revealed a marked increase in vanillin production in transgenic lines compared to wild type, with AG_3 exhibiting the highest vanillin content (1.98 ± 0.0047 mg/g extract) and AG_1 following (1.49 ± 0.0047 mg/g extract). AG_3 also showed elevated levels of benzoic acid, 4-hydroxy benzyl alcohol, and ferulic acid. This study highlights the potential of metabolic engineering in O. sanctum for enhanced vanillin production, suggesting pathways for large-scale production of natural vanillin and other valuable compounds in transgenic plants.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e70005"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling photosynthetic responses by day and night during initial water stress in Pulmonaria vallarsae. 模拟白天和夜间在初始水分胁迫条件下的光合反应。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.70004
Paolo Pupillo, Francesca Sparla, Bruno Andrea Melandri, Paolo Trost
{"title":"Modelling photosynthetic responses by day and night during initial water stress in Pulmonaria vallarsae.","authors":"Paolo Pupillo, Francesca Sparla, Bruno Andrea Melandri, Paolo Trost","doi":"10.1111/ppl.70004","DOIUrl":"10.1111/ppl.70004","url":null,"abstract":"<p><p>The relationships between photosynthesis and initial water deficit stress were investigated by chlorophyll fluorescence analysis in Pulmonaria vallarsae, a shade tolerant, perennial C3 herb by following changes of light response curves (LRCs) in single leaves during water shortage. We devised an LRC model based on two interacting rectangular hyperbolae (DH model) for the low (H1) and the high irradiance regions (H2), characterized by two parameters: maximum extrapolated ETR (V1, V2) and half-saturation irradiance (K1, K2). While H1 is assumed to represent an ETR-related function, H2 may reflect Rubisco activity. Plants were subjected to four days of water restriction in summer and tested every 12 h. While daytime values remained relatively stable, increasing water stress gradually induced a night depression of photosynthesis mainly dependent on decreasing ETR with concomitant reduction of PSII-dependent parameters (Φ<sub>PSII</sub>) and fluorescence-related functions, while nonphotochemical quenching (NPQ) was strongly enhanced. In terms of the DH model, the night depression of photosynthesis featured a night drop of V2 and K2 followed by decreases of V1 and K1. The H2 hyperbola was more stress responsive than H1 and frequently showed a reversible decrease of nocturnal H2 parameters (bright illumination constraint, BIC). Pulmonaria plants tested during winter with very low water stress displayed LRCs resembling rectangular hyperbolae, similar during day and night. The DH model is shown to yield accurate and perspicuous photosynthetic parameters representing the principal components of an LRC and to be well suitable to document the day/night divergence of photosynthetic capacity during a water deficit stress.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e70004"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Etiolation promotes protoplast transfection and genome editing efficiency. 蚀刻可提高原生质体转染和基因组编辑的效率。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14637
Yunsun Kim, Eunbin Lee, Beum-Chang Kang
{"title":"Etiolation promotes protoplast transfection and genome editing efficiency.","authors":"Yunsun Kim, Eunbin Lee, Beum-Chang Kang","doi":"10.1111/ppl.14637","DOIUrl":"https://doi.org/10.1111/ppl.14637","url":null,"abstract":"<p><p>In plants, DNA-free genome editing using preassembled clustered regularly interspaced short palindromic repeats (CRISPR)-ribonucleoprotein (RNP) has the advantage of avoiding transgene integration and limiting off-target effects. The efficiency of this gene editing strategy can vary, so optimization of protoplast transfection conditions is necessary to achieve maximum yield. In this study, we examined the effects of etiolation, or increased exposure to darkness during cultivation, on the transfection efficiency of protoplasts from lettuce and Chinese cabbage. Seedlings were grown under three different conditions: non-etiolated, etiolated, and de-etiolated. First, we tested PEG-mediated transfection after etiolation using a plasmid DNA for green fluorescent protein (GFP)-expression. Etiolated protoplasts had the highest percentage of GFP-expressing cells, with a 3.1-fold and 4.8-fold improvement in lettuce and Chinese cabbage, respectively, compared with non-etiolated protoplasts. We also assessed gene editing of endogenous genes after etiolation using CRISPR-RNP. Using targeted deep sequencing, we observed the highest editing efficiency in etiolated protoplasts from both plant species, for the LsPDS and LsFT genes in lettuce, this led to an 8.7-fold and 4.4-fold improvement compared with non-etiolated protoplasts, respectively. These results suggest that etiolation during seedling growth can improve transfection efficiency and DNA-free gene editing in protoplasts.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14637"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the role of growth regulators in enhancing plant immunity against herbivory. 解密生长调节剂在增强植物免疫力对抗食草动物方面的作用。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-11-01 DOI: 10.1111/ppl.14604
Archana Singh, Kalpesh Nath Yajnik, Kanakachari Mogilicherla, Indrakant K Singh
{"title":"Deciphering the role of growth regulators in enhancing plant immunity against herbivory.","authors":"Archana Singh, Kalpesh Nath Yajnik, Kanakachari Mogilicherla, Indrakant K Singh","doi":"10.1111/ppl.14604","DOIUrl":"https://doi.org/10.1111/ppl.14604","url":null,"abstract":"<p><p>Plants are central to global food production, and the pursuit of sustainability aims to enhance or preserve food quality while safeguarding the environment. Due to their immobility, plants are unable to evade unfavourable climatic setups or interactions with other living creatures. Upon their interaction with insect herbivores, plants face biotic stress, which is a constant challenge for plants, causing molecular, physiological, and biochemical changes and reducing their productivity. To combat biotic stress caused by herbivores, plants have evolved intricate defence mechanisms through growth regulators such as auxins, cytokinins, gibberellins, salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), strigolactones and brassinosteroids. The intricate network of specific proteins, metabolites and certain phytohormones orchestrates plant defensive reactions, leading to their skilful coordination in responding to insect attacks. Comprehending the defence mechanisms holds the key to mitigating significant crop and economic losses. This review entails a comprehensive analysis of the role of growth regulators in enhancing plant immunity against herbivory, highlighting the substantial efforts by the scientific community to manage and mitigate damages from biotic stress in plants, ultimately contributing to the advancement of sustainable agriculture.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14604"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142550082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信