Physiologia plantarum最新文献

筛选
英文 中文
Inositol polyphosphates regulate resilient mechanisms in the green alga Chlamydomonas reinhardtii to adapt to extreme nutrient conditions. 肌醇多磷酸调节绿藻莱茵衣藻适应极端营养条件的弹性机制。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70089
Rodrigo Bedera-García, María Elena García-Gómez, José María Personat, Inmaculada Couso
{"title":"Inositol polyphosphates regulate resilient mechanisms in the green alga Chlamydomonas reinhardtii to adapt to extreme nutrient conditions.","authors":"Rodrigo Bedera-García, María Elena García-Gómez, José María Personat, Inmaculada Couso","doi":"10.1111/ppl.70089","DOIUrl":"https://doi.org/10.1111/ppl.70089","url":null,"abstract":"<p><p>In the context of climate changing environments, microalgae can be excellent organisms to understand molecular mechanisms that activate survival strategies under stress. Chlamydomonas reinhardtii signalling mutants are extremely useful to decipher which strategies photosynthetic organisms use to cope with changeable environments. The mutant vip1-1 has an altered profile of pyroinositol polyphosphates (PP-InsPs), which are signalling molecules present in all eukaryotes and have been connected to P signalling in other organisms including plants, but their implications in other nutrient signalling are still under evaluation. In this study, we conducted prolonged starvation in WT and vip1-1 Chlamydomonas cells. After N and P had been consumed, they showed important differences in the levels of chlorophyll, photosystem II (PSII) activity and ultrastructural morphology, including differences in the cell size and cell division. Metabolomic analysis under these conditions revealed an overall decrease in different organic compounds such as amino acids, including arginine and its precursors and tryptophan, which is considered a signalling molecule itself in plants. In addition, we observed significant differences in RNA levels of genes related to N assimilation that are under the control of the NIT2 transcription factor. These data are of important relevance in understanding the signalling role of PP-InsPs in nutrient sensing, especially regarding N, which has not directly been connected to these molecules in green organisms before. Additionally, the PP-InsPs regulation over cell size and photosynthesis supports novel strategies for the generation of resilient strains, expanding the biotechnological applications of green microalgae.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70089"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BBX22 enhances the accumulation of antioxidants to inhibit DNA damage and promotes DNA repair under high UV-B. BBX22增强抗氧化剂的积累,抑制DNA损伤,促进高UV-B下的DNA修复。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70038
Nikhil Job, Shubhi Dwivedi, Maneesh Lingwan, Sourav Datta
{"title":"BBX22 enhances the accumulation of antioxidants to inhibit DNA damage and promotes DNA repair under high UV-B.","authors":"Nikhil Job, Shubhi Dwivedi, Maneesh Lingwan, Sourav Datta","doi":"10.1111/ppl.70038","DOIUrl":"https://doi.org/10.1111/ppl.70038","url":null,"abstract":"<p><p>Under changing climatic conditions, plant exposure to high-intensity UV-B can be a potential threat to plant health and all plant-derived human requirements, including food. It's crucial to understand how plants respond to high UV-B radiation so that proper measures can be taken to enhance tolerance towards high UV-B stress. We found that BBX22, a B-box protein-coding gene, is strongly induced within one hour of exposure to high-intensity UV-B. Our metabolomics data indicated that BBX22 promotes the accumulation of antioxidants like ascorbic acid and proline. These antioxidants play a vital role in shielding plants exposed to high UV-B from the detrimental effects of Reactive Oxygen Species (ROS), including DNA damage. Additionally, BBX22 promotes DNA damage repair by inducing the expression of DNA repair genes like UVR1 and UVR3. BBX22 directly binds to the promoter of UVR1 to regulate its expression. Furthermore, BBX22 indirectly induces the expression of UVR1 and UVR3 by enhancing the binding of HY5 to their promoters. Together, these results suggest a multi-pronged role of BBX22 in protection against high-intensity UV-B. Enhancing BBX22 levels or its orthologs in different plant species can potentially offer DNA damage protection and tolerance against intense UV radiation.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70038"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell size has pervasive effects on the functional composition and morphology of leaves: a case study in Rhododendron (Ericaceae). 细胞大小对叶片的功能组成和形态具有普遍影响:杜鹃花(杜鹃花科)案例研究。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70054
Arezoo Dastpak, Monica Williams, Sally Perkins, John A Perkins, Charles Horn, Patrick Thompson, Connor Ryan, Juliana Medeiros, Yi-Dong An, Guo-Feng Jiang, Kevin A Simonin, Adam B Roddy
{"title":"Cell size has pervasive effects on the functional composition and morphology of leaves: a case study in Rhododendron (Ericaceae).","authors":"Arezoo Dastpak, Monica Williams, Sally Perkins, John A Perkins, Charles Horn, Patrick Thompson, Connor Ryan, Juliana Medeiros, Yi-Dong An, Guo-Feng Jiang, Kevin A Simonin, Adam B Roddy","doi":"10.1111/ppl.70054","DOIUrl":"https://doi.org/10.1111/ppl.70054","url":null,"abstract":"<p><p>The leaf economics spectrum (LES) characterizes a tradeoff between building a leaf for durability versus for energy capture and gas exchange, with allocation to leaf dry mass per projected surface area (LMA) being a key trait underlying this tradeoff. However, regardless of the biomass supporting the leaf, high rates of gas exchange are typically accomplished by small, densely packed stomata on the leaf surface, which is enabled by smaller genome sizes. Here, we investigate how variation in genome size-cell size allometry interacts with variation in biomass allocation (i.e. LMA) to influence the maximum surface conductance to CO<sub>2</sub> and the rate of resource turnover as measured by leaf water residence time. We sampled both evergreen and deciduous Rhododendron (Ericaceae) taxa from wild populations and botanical gardens, including naturally occurring putative hybrids and artificially generated hybrids. We measured genome size, anatomical traits related to cell sizes, and morphological traits related to water content and dry mass allocation. Consistent with the LES, higher LMA was associated with slower water residence times, and LMA was strongly associated with leaf thickness. Although anatomical and morphological traits varied orthogonally to each other, cell size had a pervasive impact on leaf functional anatomy: for a given leaf thickness, reducing cell size elevated the leaf surface conductance and shortened the mean water residence time. These analyses clarify how anatomical traits related to genome size-cell size allometry can influence leaf function independently of morphological traits related to leaf longevity and durability.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70054"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional characterisation of WRKY transcription factor CrWRKY48 involved in regulating seed abortion of Ponkan (Citrus reticulata). 参与柑桔种子败育调控的WRKY转录因子CrWRKY48的功能特征
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70048
Liqing Lu, Xiong Gao, Yongjie Qi, Zixian Zha, Zhenghui Gao, Na Ma, Juxun Wu, Haijian Yang, Hualin Yi
{"title":"Functional characterisation of WRKY transcription factor CrWRKY48 involved in regulating seed abortion of Ponkan (Citrus reticulata).","authors":"Liqing Lu, Xiong Gao, Yongjie Qi, Zixian Zha, Zhenghui Gao, Na Ma, Juxun Wu, Haijian Yang, Hualin Yi","doi":"10.1111/ppl.70048","DOIUrl":"https://doi.org/10.1111/ppl.70048","url":null,"abstract":"<p><p>Citrus fruits are one of the most important fruits in the world, and their seedless character is favored by consumers. WRKY is a plant-specific transcription factor family involved in all aspects of plant growth and development. However, the molecular mechanism of seedless fruit formation in citrus and the role of the WRKY gene family in seed abortion are still poorly understood. In this study, we identified 47 WRKY family genes in the citrus fruit Citrus reticulata and comprehensively characterized the WRKY gene family through gene structure and evolutionary relationships. The expression patterns and protein interaction networks of the WRKY gene family were analyzed based on citrus seed abortion transcriptome data, and several WRKY genes that may be involved in the seed abortion regulation were excavated. Furthermore, CrWRKY48 was verified to regulate seed abortion positively in Arabidopsis thaliana, and the rate of seed abortion caused by overexpression of CrWRKY48 reached 45.48%. Using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assays, DNA affinity purification sequencing and yeast-one-hybrid assays, we found that CrWRKY48 activated excessive programmed cell death by regulating the expression of programmed cell death-related genes such as SOBIR1. Our results show the potential regulation of the WRKY gene family for citrus seed abortion and provide novel insights into the role of CrWRKY48 in mediating citrus seed abortion by activating programmed cell death.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70048"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of the MAP4K gene family reveals GhMAP4K13 regulates drought and salt stress tolerance in cotton. MAP4K基因家族的鉴定揭示了GhMAP4K13调控棉花的抗旱性和耐盐性。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70031
Qing Zeng, Fanjia Peng, Junjuan Wang, Shuai Wang, Xuke Lu, Allah Bakhsh, Yan Li, Bobokhonova Zebinisso Qaraevna, Wuwei Ye, Zujun Yin
{"title":"Identification of the MAP4K gene family reveals GhMAP4K13 regulates drought and salt stress tolerance in cotton.","authors":"Qing Zeng, Fanjia Peng, Junjuan Wang, Shuai Wang, Xuke Lu, Allah Bakhsh, Yan Li, Bobokhonova Zebinisso Qaraevna, Wuwei Ye, Zujun Yin","doi":"10.1111/ppl.70031","DOIUrl":"https://doi.org/10.1111/ppl.70031","url":null,"abstract":"<p><p>Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) are a class of highly conserved serine/threonine-protein kinases in eukaryotes. They participate in the typical MAPK cascade system and various signal transduction pathways regulating biological processes in plants, during stressful conditions. To date, genome-wide identification of MAP4Ks in cotton has not been reported. In this study, 77 MAP4K genes were identified in four Gossypium species. Protein characteristics, gene structures, conserved motifs and gene expression analysis were carried out. Genome-wide or fragment duplication has played an important role in the expansion of the GhMAP4K. Promoter cis-acting elements and expression patterns indicated that GhMAP4Ks are related to plant hormones (ABA, MeJA, GA, IAA, SA) and various stresses (drought, hypothermia and wound). Overexpressing GhMAP4K13 in Arabidopsis showed higher stem length in response to drought and salt stress. The wilting degree in virus-induced GhMAP4K13 gene silenced plants was substantially greater than wild type plants under drought and salt stress. Transcriptomic analysis showed that most differentially expressed genes were involved in the MAPK signaling pathway, carbon metabolism and porphyrin metabolism. Additionally, transgenic Arabidopsis and VIGS cotton showed that GhMAP4K13 was positively responsive to drought and salt stresses. This study will play an important role in understanding the function of the MAP4K gene family in response to abiotic stress in cotton.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70031"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142915235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The promotive and repressive effects of exogenous H2O2 on Arabidopsis seed germination and seedling establishment depend on application dose. 外源H2O2对拟南芥种子萌发和成苗的促进和抑制作用与施用剂量有关。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70098
Yakong Wang, Xiaohong Liu, Xiangyang Sun, Xiaonan Mao, Zhaoye Wang, Jun Peng, Zuoren Yang, Faiza Ali, Zhi Wang, Fuguang Li
{"title":"The promotive and repressive effects of exogenous H<sub>2</sub>O<sub>2</sub> on Arabidopsis seed germination and seedling establishment depend on application dose.","authors":"Yakong Wang, Xiaohong Liu, Xiangyang Sun, Xiaonan Mao, Zhaoye Wang, Jun Peng, Zuoren Yang, Faiza Ali, Zhi Wang, Fuguang Li","doi":"10.1111/ppl.70098","DOIUrl":"https://doi.org/10.1111/ppl.70098","url":null,"abstract":"<p><p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) displays significant and dual effects on seed germination and seedling development, depending on the application dosage. However, the definition of H<sub>2</sub>O<sub>2</sub> thresholds and the mechanisms underlying the dual actions in Arabidopsis seed germination and seedling development are not yet clear. Here, we analyzed the Arabidopsis seed germination profiles in response to different concentrations of exogenous H<sub>2</sub>O<sub>2</sub> and found that 2 mM functions as the key threshold, above this threshold, both seed germination and seedling establishment were gradually inhibited. By RNA-seq analysis and function verification, we identified pathways of abscisic acid (ABA) signalling, seed post-ripening, energy metabolism, ROS homeostasis, and cell wall loosening play positive roles in seed germination and seedling establishment downstream of the H<sub>2</sub>O<sub>2</sub> signalling. Further physio-chemical approaches revealed that exogenous H<sub>2</sub>O<sub>2</sub> affected the accumulation and distribution of O<sub>2</sub> <sup>•-</sup> and H<sub>2</sub>O<sub>2</sub> in embryonic tissues by regulating the tissue-specific expression of SDH2-3, RHD2, and PRXs. Collectively, we found that germination rate and aerial growth were positively correlated with endogenous H<sub>2</sub>O<sub>2</sub> content and root length was positively correlated with O<sub>2</sub> <sup>•-</sup> accumulation, demonstrating that different ROS signals played specific functions in different tissues and development processes. On the other hand, excessive H<sub>2</sub>O<sub>2</sub> (10 mM) represses these two processes for radicle cell damage caused by oxidation stress. Finally, we put forward the mechanism model of the dual effects of exogenous H<sub>2</sub>O<sub>2</sub> on seed germination and seedling establishment.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70098"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methionine adenosyltransferase MAT3 positively regulates pear pollen tube growth, possibly through interaction with pectin lyase-like protein PLL1. 蛋氨酸腺苷转移酶MAT3正调控梨花粉管生长,可能与果胶裂解酶样蛋白PLL1相互作用。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70122
Xiaoxuan Zhu, Ting Zhang, Chao Tang, Zhiqi Wang, Lin Guo, Peng Wang, Shaoling Zhang, Juyou Wu
{"title":"Methionine adenosyltransferase MAT3 positively regulates pear pollen tube growth, possibly through interaction with pectin lyase-like protein PLL1.","authors":"Xiaoxuan Zhu, Ting Zhang, Chao Tang, Zhiqi Wang, Lin Guo, Peng Wang, Shaoling Zhang, Juyou Wu","doi":"10.1111/ppl.70122","DOIUrl":"https://doi.org/10.1111/ppl.70122","url":null,"abstract":"<p><p>Methionine adenosyltransferase (MAT) is the only enzyme that synthesises S-adenosylmethionine (SAM) from ATP and methionine in organisms. While MAT has been extensively studied in plant development and responses to abiotic stress, its role in plant fertilization, particularly in pear pollen tube growth, has been scarcely researched. Here, we demonstrate that the homologous gene of AtMAT3 in pear, PbrMAT3, is positively involved in pear pollen tube elongation. PbrMAT3 is predominantly expressed in pear pollen. Transient knockdown of PbrMAT3 inhibits pollen tube growth. Ethionine, a toxic methionine analogue, suppressed pollen tube growth in control samples but had no inhibitory effect on PbrMAT3-knockdown pollen tubes, suggesting increased methionine accumulation in the latter. However, this accumulation is not responsible for the observed growth inhibition. PbrMAT3 interacts with a pectin lyase-like protein, PbrPLL1, both in vivo and in vitro. Transient knockdown of PbrPLL1 promotes pollen tube growth, suggesting its negative role in pear pollen tube elongation. Additionally, the pectate lyase activity of the pear pollen tube was increased when PbrMAT3 was knocked down. Thus, the inhibition of pollen tube growth due to PbrMAT3 knockdown is not caused by methionine accumulation but may be mediated by PbrPLL1. This study provides new insight into the relationship between S-adenosylmethionine synthesis and pollen tube growth.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70122"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The C3H gene PtZFP2-like in Pinellia ternata acts as a positive regulator of the resistance to soft rot caused by Pectobacterium carotovorum. 半夏(Pinellia ternata) C3H基因PtZFP2-like对胡萝卜乳杆菌(Pectobacterium carotovorum)引起的软腐病抗性起正向调节作用。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70121
Ming Luo, Xinyao Li, Jingyi Zhang, Yuhuan Miao, Dahui Liu
{"title":"The C3H gene PtZFP2-like in Pinellia ternata acts as a positive regulator of the resistance to soft rot caused by Pectobacterium carotovorum.","authors":"Ming Luo, Xinyao Li, Jingyi Zhang, Yuhuan Miao, Dahui Liu","doi":"10.1111/ppl.70121","DOIUrl":"10.1111/ppl.70121","url":null,"abstract":"<p><p>Pinellia ternata (Thunb.) Breit is a member of the Araceae family and is globally distributed. The dry tuber has been used as a traditional Chinese medicine for over 2,000 years. With agricultural development, the harm of soft rot to P. ternata is an increasing problem. The lack of germplasm resources resistant to soft rot leads to less research on resistance mechanisms. In our study, we screened disease-resistant P. ternata P-1 and disease-susceptible P. ternata P-4 for the first time. Then, the infection of soft rot for 0, 24, and 48 hours was performed, and a de novo transcriptome analysis explored key genes associated with soft rot resistance. A total of 260,169 unigenes were identified and differentially expressed gene analysis was conducted. In total, 33 C3H-type ZFP genes were differentially expressed under Pectobacterium carotovorum infection. Transient expression of ZFP2-like (Cluster-5189.85444) resulted in a twofold increase at 24 hour post infection (hpi) and a threefold increase at 48 hpi in P-1 with soft rot infection, but no significant difference at P-4 enhanced the resistance of Nicotiana benthamiana to soft rot. Stable overexpression in P. ternata with a 2 ~ 11-fold increase in gene expression and reduced the lesion size from 6 mm to 2 ~ 4 mm at 24 hpi, demonstrating increased resistance to P. carotovorum. These findings indicated the ZFP2-like gene plays a pivotal role in soft rot resistance, enriches genetic data on disease resistance in P. ternata, and contributes to breed selection and improvement.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70121"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigating Oxidative Browning in Litchi by Regulating Biochemical Markers and Targeted Gene expression via Exogenous Nitric Oxide. 通过外源一氧化氮调节生化标记物和靶向基因表达减轻荔枝氧化褐变。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70107
Khushboo Azam, Hidayatullah Mir, Mohammed Wasim Siddiqui, Tushar Ranjan, Fozia Homa, Nusrat Perveen, Duniya Ram Singh, Manzer H Siddiqui
{"title":"Mitigating Oxidative Browning in Litchi by Regulating Biochemical Markers and Targeted Gene expression via Exogenous Nitric Oxide.","authors":"Khushboo Azam, Hidayatullah Mir, Mohammed Wasim Siddiqui, Tushar Ranjan, Fozia Homa, Nusrat Perveen, Duniya Ram Singh, Manzer H Siddiqui","doi":"10.1111/ppl.70107","DOIUrl":"https://doi.org/10.1111/ppl.70107","url":null,"abstract":"<p><p>Nitric oxide has been shown to influence oxidative metabolism in plants, enhancing their resilience to various biotic and abiotic stresses. Post-harvest oxidative stress is a key factor leading to quality deterioration in litchi (Litchi chinensis Sonn.) fruit, with visible symptoms that significantly reduce shelf life and consumer acceptability. Therefore, the effect of exogenous sodium nitroprusside (SNP; 1.0 mM and 2.0 mM) on litchi (cv. Purbi) fruit was examined during storage at 7 ± 1°C. Different biochemical changes related to post-harvest quality and pericarp browning of litchi were evaluated. The results suggested that SNP (2.0 mM) was significantly effective in reducing weight loss, the pericarp browning index and decay loss. The fruit subjected to SNP (2.0 mM) treatment retained more total anthocyanins and total phenolic content with reduced peroxidase and polyphenol oxidase enzyme activity. Other quality attributes, such as total soluble solids (TSS), titratable acidity and ascorbic acid, were also recorded to be greater in the SNP (2.0 mM)-treated fruits. These results were consistent with the expression profiles of LcPPO, LcPOD and Laccase genes. The expression levels of these genes were highly suppressed in the nitric oxide-treated fruits compared to those in the control fruits. Therefore, SNP (2.0 mM) treatment could reduce litchi pericarp browning and prolong the post-harvest life of fruit for up to eighteen days during cold storage.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70107"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effects of hydrogen sulfide and nitric oxide in enhancing salt stress tolerance in cucumber seedlings. 硫化氢和一氧化氮在提高黄瓜幼苗耐盐性中的协同效应。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70109
Ritu Kumari, M Nasir Khan, Zubair Ahmad Parrey, Preedhi Kapoor, Bilal Ahmad Mir, Tuba Taziun, Parul Parihar, Gurmeen Rakhra
{"title":"Synergistic effects of hydrogen sulfide and nitric oxide in enhancing salt stress tolerance in cucumber seedlings.","authors":"Ritu Kumari, M Nasir Khan, Zubair Ahmad Parrey, Preedhi Kapoor, Bilal Ahmad Mir, Tuba Taziun, Parul Parihar, Gurmeen Rakhra","doi":"10.1111/ppl.70109","DOIUrl":"https://doi.org/10.1111/ppl.70109","url":null,"abstract":"<p><p>Salinity stress poses a significant threat to plant growth and agricultural productivity, affecting millions of hectares of land worldwide. The adverse effects of salt toxicity, primarily caused by high levels of sodium chloride in soil and water, disrupt essential physiological processes in plants, leading to reduced yields and degraded soil quality. The present study thoroughly investigated the potential involvement of hydrogen sulphide (H<sub>2</sub>S) and nitric oxide (NO) in facilitating salt stress tolerance in cucumbers. In this investigation, NaHS (sodium hydrogen sulfide), which is the donor of H<sub>2</sub>S, and SNP (sodium nitroprusside), which is the donor of NO, were used as treatments for cucumber seedlings exposed to salt stress. Additionally, L-NAME (N-nitro-L-arginine: 100 μM) and cPTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide), which are inhibitors and scavengers of NO respectively, were used to verify the involvement of NO in the presence of salinity. NaHS and SNP supplementation significantly boosted fresh weight, dry weight, plant height, and chlorophyll content, promoting growth under salt stress. These treatments raised endogenous H<sub>2</sub>S and NO levels, upregulating antioxidative enzymes like SOD, CAT, APX, GR, GPX, and GSTs. This response reduced oxidative damages by lowering reactive oxygen species (ROS) and lipid peroxidation. The combined application of NaHS and SNP under salt stress offers a promising and cost-effective strategy to improve plant resilience to salinity, reduce oxidative stress, and ultimately enhance crop productivity. These findings provide important insights into the potential use of H<sub>2</sub>S and NO donors for sustaining agricultural production in saline environments, addressing a critical global challenge for food security.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70109"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143459273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信