Physiologia plantarum最新文献

筛选
英文 中文
Deeper insights into the physiological and metabolic functions of the pigments in plants and their applications: beyond natural colorants. 深入了解植物色素的生理和代谢功能及其应用:超越天然色素。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-03-01 DOI: 10.1111/ppl.70168
Gayatri Mishra, Sasmita Priyadarsini Dash, Subrat Kumar Mahapatra, Dhaneswar Swain, Gyana Ranjan Rout
{"title":"Deeper insights into the physiological and metabolic functions of the pigments in plants and their applications: beyond natural colorants.","authors":"Gayatri Mishra, Sasmita Priyadarsini Dash, Subrat Kumar Mahapatra, Dhaneswar Swain, Gyana Ranjan Rout","doi":"10.1111/ppl.70168","DOIUrl":"https://doi.org/10.1111/ppl.70168","url":null,"abstract":"<p><p>Plant pigments are the natural source of color perceived by the human senses. They have captivated researchers to explore their structural, physical, and chemical properties, synthesis mode, and physiological significance. They are secondary metabolites in plants metabolism, growth and regulation, photosynthesis, and defense. Chlorophylls, carotenoids, anthocyanins, and betalains are the major classes of natural colors contributing color shades to textiles, foods, and cosmetics. The bioactive properties of these compounds are used to apply the compounds as pharmaceuticals to treat chronic degenerative diseases like hypertension, diabetes, cancer, and cardiovascular disorders. This review discusses classification, biosynthesis, physiological and metabolic activities, commercial applications of plant pigments, and knowledge gaps in pigment identification and application prospects. The review discusses developments in technologies such as non-encapsulation to preserve the unstable properties of pigment extracts for commercial use and transporter genes involved in synthesizing essential pigments. However, additional research is required to gain insight into the candidate gene for orchestrating stress responses and the potential for engineering stress tolerance in various crops.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70168"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143754098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological, molecular, and metabolic adaptations of plants to combined salinity and high irradiance stress. 植物对盐度和高辐照胁迫的生理、分子和代谢适应。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-03-01 DOI: 10.1111/ppl.70164
Segarra-Medina Clara, Gómez-Cadenas Aurelio, Zandalinas Sara
{"title":"Physiological, molecular, and metabolic adaptations of plants to combined salinity and high irradiance stress.","authors":"Segarra-Medina Clara, Gómez-Cadenas Aurelio, Zandalinas Sara","doi":"10.1111/ppl.70164","DOIUrl":"https://doi.org/10.1111/ppl.70164","url":null,"abstract":"<p><p>Global warming is expected to drive climate change, intensifying extreme weather events and aggravating stress conditions for plants due to the heightened frequency and severity of environmental factors. Among these stresses, the interplay of salinity and high irradiance is particularly critical, as it poses significant threats to crop productivity, food quality, and overall global food security. This review provides a comprehensive analysis of the physiological, molecular, and metabolic responses of various plant species to salinity (S), high irradiance (HL), and their combined stress (S + HL), highlighting the adaptative mechanisms plants employ to mitigate these adverse conditions. This study integrates in silico data, focusing on gene expression profiles and functional classification using Gene Ontology (GO) terms and analysis of transcription factor (TF) families such as MYB, WRKY and bHLH. Alongside gene expression data, we incorporated analyses of growth, development, and metabolism profiles across different species exposed to S, HL and S + HL. The findings point to adaptive mechanisms crucial for resilience, including reconfigurations in gene expression patterns, metabolic pathways and phytohormone profiles, demonstrating their potential in the development of climate-resilient crops. This review offers a framework for further research into multi-stress adaptation strategies. In addition, the importance of advancing crop resilience through these insights, contributing to the development of innovative approaches for sustainable agriculture in a rapidly changing climate, is outlined.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70164"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143701199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytohormones and emerging plant growth regulators in tailoring plant immunity against viral infections. 植物激素和新出现的植物生长调节剂在调节植物免疫抵御病毒感染方面的作用。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-03-01 DOI: 10.1111/ppl.70171
Kritika Shukla, Nikita, Altaf Ahmad, Md Salik Noorani, Ravi Gupta
{"title":"Phytohormones and emerging plant growth regulators in tailoring plant immunity against viral infections.","authors":"Kritika Shukla, Nikita, Altaf Ahmad, Md Salik Noorani, Ravi Gupta","doi":"10.1111/ppl.70171","DOIUrl":"10.1111/ppl.70171","url":null,"abstract":"<p><p>Viral infections are major contributors to crop yield loss and represent a significant threat to sustainable agriculture. Plants respond to virus attacks by activating sophisticated signalling cascades that initiate multiple defence mechanisms. Notably, several phytohormones, including salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and ethylene (ET), are known to shape these defence responses. In recent years, various plant growth regulators (PGRs) such as melatonin, carrageenans, sulfated fucan oligosaccharides, nitric oxide (NO), brassinosteroids (BRs), and hydrogen sulfide (H<sub>2</sub>S) have also emerged as crucial regulators of plant defence responses against virus infections. Emerging evidence indicates that these PGRs coordinate with phytohormones to activate various defence strategies, including (1) stomatal closure to limit pathogen entry, (2) callose deposition to block plasmodesmata and restrict viral spread within host tissues, (3) attenuation of viral replication, and (4) activation of RNA interference (RNAi), a crucial antiviral defence response. However, the interactions and crosstalk between PGRs and phytohormones remain largely underexplored, thereby limiting our ability to develop innovative strategies for managing viral diseases. This review discusses the diverse functions and crosstalk among various phytohormones and PGRs in orchestrating the plant defence mechanisms, highlighting their impact on viral replication, movement, and intercellular transport.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70171"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932968/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143701212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tightly regulated auxin signaling landscape is required for spatial accommodation of lateral roots in Arabidopsis. 拟南芥侧根的空间调节需要一个严格调控的生长素信号传导景观。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-03-01 DOI: 10.1111/ppl.70184
Thái X Bùi, Vinay Shekhar, Sophie Marc-Martin, Kevin Bellande, Joop E M Vermeer
{"title":"A tightly regulated auxin signaling landscape is required for spatial accommodation of lateral roots in Arabidopsis.","authors":"Thái X Bùi, Vinay Shekhar, Sophie Marc-Martin, Kevin Bellande, Joop E M Vermeer","doi":"10.1111/ppl.70184","DOIUrl":"https://doi.org/10.1111/ppl.70184","url":null,"abstract":"<p><p>In Arabidopsis thaliana, lateral root (LR) development requires spatial accommodation responses in overlying endodermal cells. This includes loss of cell volume whilst maintaining membrane integrity to allow the expansion of the underlying LR primordia (LRPs). These accommodation responses are regulated by auxin-mediated signaling, specifically through Aux/IAA proteins, involving IAA3/SHY2. Plants that express a stabilized version of SHY2 (shy2-2) in differentiated endodermal cells, CASP1<sub>pro</sub>::shy2-2 plants, fail to make LRs. Exogenous treatment with 1-naphthaleneacetic acid (NAA) was reported to partially restore LR formation in this spatial accommodation mutant. Using treatments with auxins having different transport properties, such as NAA, indole-3-acetic acid (IAA), and 2,4-dichlorophenoxyacetic acid (2,4-D), we assessed the ability of each auxin to rescue LR formation in CASP1<sub>pro</sub>::shy2-2 roots. This revealed that IAA is the most effective in partially restoring LR development, NAA is effective in inducing LRPs but cannot maintain their canonical phenotype, whereas 2,4-D induces non-controlled cell divisions. In addition, we show that in CASP1<sub>pro</sub>::shy2-2 roots, AUX1 appears to be repressed in the zone where oscillation of the auxin response has been described. Our study advances the understanding of auxin-regulated spatial accommodation mechanisms during LRP formation and highlights the complex interplay of auxin transport and signaling in bypassing the endodermal constraints.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70184"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143711019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolomic profiling of shade response and in silico analysis of PAL homologs imply the potential presence of bifunctional ammonia lyases in conifers. 遮荫反应的代谢组学分析和PAL同源物的硅分析表明针叶树中可能存在双功能氨裂解酶。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-03-01 DOI: 10.1111/ppl.70175
Sonali Sachin Ranade, María Rosario García-Gil
{"title":"Metabolomic profiling of shade response and in silico analysis of PAL homologs imply the potential presence of bifunctional ammonia lyases in conifers.","authors":"Sonali Sachin Ranade, María Rosario García-Gil","doi":"10.1111/ppl.70175","DOIUrl":"10.1111/ppl.70175","url":null,"abstract":"<p><p>Norway spruce and Scots pine show enhanced lignin synthesis under shade, along with differential expression of defense-related genes that render disease resilience. In general, phenylalanine (Phe) is the precursor for lignin synthesis in plants, and tyrosine (Tyr) forms an additional lignin precursor specifically in grasses. Phenylalanine ammonia-lyase (PAL) and tyrosine ammonia-lyase (TAL) from the lignin biosynthesis pathway use either Phe or Tyr as precursors for lignin production, respectively. Grasses possess a bifunctional phenylalanine/tyrosine ammonia-lyase (PTAL) that potentially can use both Phe and Tyr for lignin biosynthesis. Metabolomic profiles of seedlings revealed higher levels of Phe and Tyr under shade in Scots pine, while Norway spruce showed differential regulation of only Tyr under shade. Sequence analysis and phylogeny of PAL homologs in the two conifers, coupled with correlation of up-regulation of precursors for lignin synthesis (Phe/Tyr) and enhanced lignin synthesis along with differential expression of PAL homologs under shade, suggest the potential presence of a bifunctional ammonia-lyases (BAL) in conifers. This finding is novel and comparable to PTALs in grasses. Exome sequence analysis revealed a latitudinal variation in allele frequencies of SNPs from coding regions of putative PAL and BAL in Norway spruce, which may impact enzyme activity affecting lignin synthesis. Metabolomic analysis additionally identified metabolites involved in plant immunity, defense and stress response.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70175"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transgenic Cynodon dactylon overexpressing CdPIF4 alters plant development and cold stress tolerance. 过表达CdPIF4的转基因Cynodon dactylon改变了植物的发育和对冷胁迫的耐受性。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70025
Xiao Xu, Xiaoyan Liu, Yanling Yin, Shugao Fan, Yunjie Qi, Yiquan Xing, Jinmin Fu
{"title":"Transgenic Cynodon dactylon overexpressing CdPIF4 alters plant development and cold stress tolerance.","authors":"Xiao Xu, Xiaoyan Liu, Yanling Yin, Shugao Fan, Yunjie Qi, Yiquan Xing, Jinmin Fu","doi":"10.1111/ppl.70025","DOIUrl":"https://doi.org/10.1111/ppl.70025","url":null,"abstract":"<p><p>Bermudagrass [Cynodon dactylon (L.) Pers.] is widely used for soil remediation, livestock forage, and as turfgrass for sports fields, parks, and gardens due to its resilience and adaptability. However, low temperatures are critical factors limiting its geographical distribution and ornamental season, even preventing its safe overwintering. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) acts as a hub transcription factor, not only regulating various light responses but also integrating multiple external stimuli to improve plant productivity and architectural adaptation under adverse stress conditions, which makes it potential as a target gene. In this study, we cloned and characterized the CdPIF4 genes in bermudagrass. Expression analysis revealed that it is predominantly expressed in leaves and is regulated by photoperiod and cold stress. Using Agrobacterium-mediated genetic modification, we successfully generated CdPIF4a-overexpressing bermudagrass lines. Under cold stress at 4°C, these transgenic plants demonstrated enhanced cold tolerance, as indicated by higher relative water content, reduced membrane damage, and lower levels of lipid peroxidation levels. Photosynthetic analysis revealed that CdPIF4a-overexpressing plants exhibited higher light energy capture and transfer efficiency at this low temperature, with less energy loss. Additionally, they showed higher antioxidant enzyme activity and lower levels of reactive oxygen species levels. The responsive regulation of cold stress-related genes further validated the role of the CdPIF4a gene in enhancing cold tolerance. This study elucidates that CdPIF4 enhances cold tolerance in bermudagrass through physiological and molecular mechanisms, offering new insights and valuable genetic resources for advancing cold resistance research in bermudagrass and other grass species.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70025"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142915255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The molecular mechanism of transforming red light signal to (E)-β-caryophyllene biosynthesis in Arabidopsis. 拟南芥将红光信号转化为(E)-β-石竹烯生物合成的分子机制
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70065
Chuanjia Xu, Xin Wang, Malakkhanim Mehraliyeva, Jia Sun, Fangfang Chen, Changfu Li, Zhengqin Xu, Nan Tang, Yansheng Zhang
{"title":"The molecular mechanism of transforming red light signal to (E)-β-caryophyllene biosynthesis in Arabidopsis.","authors":"Chuanjia Xu, Xin Wang, Malakkhanim Mehraliyeva, Jia Sun, Fangfang Chen, Changfu Li, Zhengqin Xu, Nan Tang, Yansheng Zhang","doi":"10.1111/ppl.70065","DOIUrl":"https://doi.org/10.1111/ppl.70065","url":null,"abstract":"<p><p>It is known that red light irradiation enhances the biosynthesis of (E)-β-caryophyllene in plants. However, the underlying mechanism connecting red light to (E)-β-caryophyllene biosynthesis remains elusive. This study reveals a molecular cascade involving the phyB-PIF4-MYC2 module, which regulates (E)-β-caryophyllene biosynthesis in response to the red light signal in Arabidopsis thaliana. In this module, phyB positively regulates (E)-β-caryophyllene biosynthesis under red light, whereas PIF4 negatively regulates it; both regulations require the involvement of MYC2, a transcription factor that can bind directly to the promoter of the TPS21 gene which encodes (E)-β-caryophyllene synthase. Importantly, protein-protein and protein-DNA interaction assays show that PIF4 reduces the binding affinity of MYC2 to the TPS21 promoter through direct interaction with MYC2. We propose that the phyB-PIF4-MYC2 module represents a universal mechanism linking red light to sesquiterpene biosynthesis in plants.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70065"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A NAC transcription factor NAC50 regulates Fe reutilization in Arabidopsis under Fe-deficient condition. NAC转录因子NAC50调控拟南芥缺铁条件下铁的再利用。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70047
Jing Huang, Chun Yan Tu, Hao Yu Wang, Qiang Zhang, Ren Fang Shen, Lu Zheng, Xiao Fang Zhu
{"title":"A NAC transcription factor NAC50 regulates Fe reutilization in Arabidopsis under Fe-deficient condition.","authors":"Jing Huang, Chun Yan Tu, Hao Yu Wang, Qiang Zhang, Ren Fang Shen, Lu Zheng, Xiao Fang Zhu","doi":"10.1111/ppl.70047","DOIUrl":"https://doi.org/10.1111/ppl.70047","url":null,"abstract":"<p><p>A lack of iron (Fe) inhibits the growth and development of plants, leading to reduced agricultural yields and quality. In the last ten years, numerous studies have focused on the induction of Fe uptake and translocation under Fe deficiency, but the regulatory mechanisms governing Fe reutilization within plants are still not well understood. Here, we demonstrated the involvement of the NAM/ATAF1/2/CUC2 (NAC) transcription factor NAC50 in response to Fe shortage. The content of soluble Fe was greatly reduced in nac50 mutants, leading to increased chlorosis in the newly emerging leaves under the Fe-deficient condition. Subsequent investigation revealed that the cell wall of the nac50 mutants' roots accumulated more Fe, along with an increment in hemicellulose content, indicating that a cell wall-associated Fe reutilization pathway was involved in the NAC50-regulated Fe insufficiency response. Interestingly, the expression of NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), a key enzyme in the abscisic acid (ABA) biosynthetic pathway, was down-regulated in the Fe-deficient nac50 mutants, resulting in decreased endogenous ABA level and Fe-deficient sensitive phenotype. Since no direct relationship was observed between NAC50 and NCED3, this suggests a potential role of NAC50 in mediating the ABA accumulation. Moreover, exogenous ABA application in the nac50 mutant restored Fe deficiency resistance to the level observed in wild-type plants (WT), indicating that NAC50 induced the cell wall Fe reutilization potentially through the regulation of ABA accumulation.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70047"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plants as biofactories for production of the aphid sex pheromone nepetalactone. 植物作为生产蚜虫性信息素内酯的生物工厂。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70110
Abraham Ontiveros-Cisneros, Jule Salfeld, Bao-Jian Ding, Hong-Lei Wang, Oliver Moss, Magne Friberg, Alex Van Moerkercke, Christer Löfstedt, Olivier Van Aken
{"title":"Plants as biofactories for production of the aphid sex pheromone nepetalactone.","authors":"Abraham Ontiveros-Cisneros, Jule Salfeld, Bao-Jian Ding, Hong-Lei Wang, Oliver Moss, Magne Friberg, Alex Van Moerkercke, Christer Löfstedt, Olivier Van Aken","doi":"10.1111/ppl.70110","DOIUrl":"10.1111/ppl.70110","url":null,"abstract":"<p><p>Aphids cause massive agricultural losses through direct damage or as pathogen vectors. Control often relies on insecticides, which are expensive and not selective. An interesting alternative is to use aphid sex pheromones nepetalactone (NON) and nepetalactol (NOL) to interfere with aphid mating or attract aphid predators. Here, we explore production of these compounds in plants, as their precursors can be derived from mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. By introducing six genes, including a major latex protein-like (MLPL) enzyme, we engineered a functional nepetalactol biosynthetic pathway into plants. Transient expression of these enzymes in N. benthamiana caused production of nepetalactone, without the need for external supplementation with substrates. Targeting all six enzymes into the chloroplast appeared to result in higher NON yields than just chloroplast-targeting the first two enzymes. We could not detect NOL, suggesting it is rapidly oxidised to NON. In addition, we produced NON in stably transformed Camelina sativa (Camelina) lines. Interestingly, the specific NON enantiomer was different in N. benthamiana compared to in Camelina, indicating the value of different platforms for producing specific isoforms. This opens possibilities for using plants as green factories of pheromones for baits or as pheromone dispensers that interfere with insect behaviour.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70110"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytohormones enhance resistance to Tenebrio molitor by regulating reactive oxygen species and phenolic metabolism in pigeon pea. 植物激素通过调节鸽子豆中的活性氧和酚代谢增强其对 Tenebrio molitor 的抗性。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2025-01-01 DOI: 10.1111/ppl.70111
Jie Yang, Hongquan Li, Su Zhang, Yuexin Zhang, Jianbo Xie, Michael Wink, Yujie Fu
{"title":"Phytohormones enhance resistance to Tenebrio molitor by regulating reactive oxygen species and phenolic metabolism in pigeon pea.","authors":"Jie Yang, Hongquan Li, Su Zhang, Yuexin Zhang, Jianbo Xie, Michael Wink, Yujie Fu","doi":"10.1111/ppl.70111","DOIUrl":"https://doi.org/10.1111/ppl.70111","url":null,"abstract":"<p><p>Pigeon pea is an important economic crop with medicinal and nutritional value. Unfortunately, pest infestation of leaves during postharvest storage seriously affects the quality of pigeon pea. Phytohormones play a crucial role in disease and pest defence by regulating the accumulation of specialized metabolites. Still, their impact on the postharvest storage of pigeon pea has not been reported. In this study, the physiological parameters and main phenotypes of pigeon pea leaves treated with MeJA, ABA, and GA were investigated for the first time. The activity of the antioxidant enzyme system, which eliminates reactive oxygen species, was enhanced by applying MeJA, GA, and ABA. MeJA, GA, and ABA significantly affected crown width, plant height, and relative water content in pigeon pea, respectively. Metabolomic profiling analysis identified phenolic compounds as the main differentially accumulated metabolites (DAMs). UPLC-QqQ-MS/MS identified stilbenes, flavanones, flavones, isoflavones and anthocyanins as major phenolic compounds responsive to MeJA, GA, and ABA induction. By feeding insects, it was found that the insects fed on MeJA-, ABA-, and GA-treated leaves less than on control leaves. Correlation analysis confirmed that isoflavones play an important role in this process. Moreover, the expression of key genes involved in flavonoid biosynthetic pathways and anti-insect-related genes was regulated by MeJA, GA, and ABA. Overall, this work provides a new strategy for the cultivation and storage of pigeon pea or other commercial crops and preliminarily clarifies that flavonoid metabolites under plant hormone treatment can promote plant growth and defence against insects by regulating reactive oxygen species.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70111"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143483957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信