Physiologia plantarum最新文献

筛选
英文 中文
Unveiling the role of the ERD15 gene in wheat's tolerance to combined drought and salinity stress: a meta-analysis of QTL and RNA-Seq data. 揭示ERD15基因在小麦耐干旱和盐渍化联合胁迫中的作用:QTL和RNA-Seq数据的元分析。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14570
Roohollah Shamloo-Dashtpagerdi, Mohammad Jafar Tanin, Massume Aliakbari, Dinesh Kumar Saini
{"title":"Unveiling the role of the ERD15 gene in wheat's tolerance to combined drought and salinity stress: a meta-analysis of QTL and RNA-Seq data.","authors":"Roohollah Shamloo-Dashtpagerdi, Mohammad Jafar Tanin, Massume Aliakbari, Dinesh Kumar Saini","doi":"10.1111/ppl.14570","DOIUrl":"10.1111/ppl.14570","url":null,"abstract":"<p><p>The coexistence of drought and salinity stresses in field conditions significantly hinders wheat (Triticum aestivum L.) productivity. Understanding the molecular mechanisms governing response and tolerance to these stresses is crucial for developing resilient wheat varieties. Our research, employing a combination of meta-QTL and meta-RNA-Seq transcriptome analyses, has uncovered the genome functional landscape of wheat in response to drought and salinity. We identified 118 meta-QTLs (MQTLs) distributed across all 21 wheat chromosomes, with ten designated as the most promising. Additionally, we found 690 meta-differentially expressed genes (mDEGs) shared between drought and salinity stress. Notably, our findings highlight the Early Responsive to Dehydration 15 (ERD15) gene, located in one of the most promising MQTLs, as a key gene in the shared gene network of drought and salinity stress. ERD15, differentially expressed between contrasting wheat genotypes under combined stress conditions, significantly regulates water relations, photosynthetic activity, antioxidant activity, and ion homeostasis. These findings not only provide valuable insights into the molecular genetic mechanisms underlying combined stress tolerance in wheat but also hold the potential to contribute significantly to the development of stress-resilient wheat varieties.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultraviolet-induced melanisation in lichens: physiological traits and transcriptome profile. 紫外线诱导的地衣黑化:生理特征和转录组特征。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14512
Ilya Leksin, Mikhail Shelyakin, Ilya Zakhozhiy, Olga Kozlova, Richard Beckett, Farida Minibayeva
{"title":"Ultraviolet-induced melanisation in lichens: physiological traits and transcriptome profile.","authors":"Ilya Leksin, Mikhail Shelyakin, Ilya Zakhozhiy, Olga Kozlova, Richard Beckett, Farida Minibayeva","doi":"10.1111/ppl.14512","DOIUrl":"https://doi.org/10.1111/ppl.14512","url":null,"abstract":"<p><p>Lichens are important components of high-latitude boreal and Arctic habitats. While stress tolerant, they are among the most sensitive ecosystem components to climate change, in particular, an increase in ultraviolet light (UV) arising from polar ozone depletion and deforestation. This study is the first to explore the effects of UV-B on gene expression in lichens to predict metabolic pathways involved in tolerance. Using transcriptome profiling and bioinformatic analyses, here we studied the effects of UV-B on gene expression in lichens using Lobaria pulmonaria (L.) Hoff. as a model species. UV-B exposure causes significant browning of the upper cortex of the thallus, which correlates to an increased expression of biosynthetic gene clusters involved in the synthesis of eu- and allomelanins and melanin precursors. Based on transcriptome analyses, we suggest that the biosynthesis of melanins and other secondary metabolites, such as naphthalene derivates, tropolones, anthraquinones, and xanthones, is a trade-off that lichens pay to protect essential metabolic processes such as photosynthesis and respiration. Expression profiles of general stress-associated genes, in particular, related to reactive oxygen species scavenging, protection of proteins, and DNA repair, clearly indicate that the mycobiont is the more UV-B-responsive and susceptible partner in lichen symbiosis. Our findings demonstrate that UV-B stress activates an intricate gene network involved in tolerance mechanisms of lichen symbionts. Knowledge obtained here may enable the prediction of likely effects on lichen biodiversity caused by climate change and pollution.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HAIRY MERISTEM proteins regulate the WUSCHEL protein levels in mediating CLAVATA3 expression. HAIRY MERISTEM 蛋白在介导 CLAVATA3 表达的过程中调节 WUSCHEL 蛋白水平。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14505
Kevin Rodriguez, Lloyd Kao, Vincent E Cerbantez-Bueno, Christian Delgadillo, Dorothy Nguyen, Samin Ullah, Cameron Delgadillo, G Venugopala Reddy
{"title":"HAIRY MERISTEM proteins regulate the WUSCHEL protein levels in mediating CLAVATA3 expression.","authors":"Kevin Rodriguez, Lloyd Kao, Vincent E Cerbantez-Bueno, Christian Delgadillo, Dorothy Nguyen, Samin Ullah, Cameron Delgadillo, G Venugopala Reddy","doi":"10.1111/ppl.14505","DOIUrl":"10.1111/ppl.14505","url":null,"abstract":"<p><p>The precise regulation of stem cells in the shoot apical meristems (SAMs) involves the function of the homeodomain transcription factor (TF)-WUSCHEL (WUS). WUS has been shown to move from the site of production-the rib-meristem (RM), into overlaying cells of the central zone (CZ), where it specifies stem cells and also regulates the transcription of CLAVATA3 (CLV3). The secreted signalling peptide CLV3 activates a receptor kinase signalling that restricts WUS transcription and also regulates the nuclear gradient of WUS by offsetting nuclear export. WUS has been shown to regulate both CLV3 levels and spatial activation, restricting its expression to a few cells in the CZ. The HAIRY MERISTEM (HAM), a GRASS-domain class of TFs expressed in the RM, has been shown to physically interact with WUS and regulate CLV3 expression. However, the mechanisms by which this interaction regulates CLV3 expression non-cell autonomously remain unclear. Here, we show that HAM function is required for regulating the WUS protein stability, and the CLV3 expression responds to altered WUS protein levels in ham mutants. Thus, HAM proteins non-cell autonomously regulates CLV3 expression.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Root physiological and soil microbial mechanisms underlying responses to nitrogen deficiency and compensation in Indica and Japonica rice. 籼稻和粳稻对氮素缺乏和补偿反应的根系生理和土壤微生物机制。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14549
Runnan Wang, Guoping Tang, Yanyao Lu, Dingshun Zhang, Shuo Cai, Haohua He, Hongcheng Zhang, Qiangqiang Xiong
{"title":"Root physiological and soil microbial mechanisms underlying responses to nitrogen deficiency and compensation in Indica and Japonica rice.","authors":"Runnan Wang, Guoping Tang, Yanyao Lu, Dingshun Zhang, Shuo Cai, Haohua He, Hongcheng Zhang, Qiangqiang Xiong","doi":"10.1111/ppl.14549","DOIUrl":"https://doi.org/10.1111/ppl.14549","url":null,"abstract":"<p><p>Compensatory effects are common biological phenomena in nature. In this study, we investigated the changes in root nitrogen uptake, root morphological and physiological responses, and changes in the rhizosphere soil microbial communities of indica and japonica rice during a nitrogen deficiency-sensitive period and an effective compensation period with double the nitrogen supply. We conducted a bucket experiment using Suxiu 867 (a japonica rice variety) and Yangxian You 918 (an indica rice variety). Treatments included CK (constant distribution of nitrogen fertilizer at each growth stage, represented by CK867 and CK918) and NDC (nitrogen deficiency in the tillering stage, double nitrogen application in the ear differentiation stage to compensate, represented by NDC867 and NDC918) variations. Both varieties presented the highest δ<sup>15</sup>N and <sup>15</sup>N abundances and Ndff (refers to the proportion of nitrogen in a plant's body that comes directly from the fertilizer applied.) in rice under the NDC treatment. Metagenomic sequencing of rhizospheric soil showed that the dominant bacterial groups at the phylum level among each treatment were Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, Gemmatimonadetes, and Nitrospirae. The rhizosphere of indica rice was more enriched with the microbial communities involved in nitrogen metabolism, which contributed to higher nitrogen utilization efficiency. A correlation-based network was constructed and provides insights into the formation of nitrogen deficiency compensation effects and contributes to the enhancement of nitrogen uptake and utilization efficiency in rice production.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of cotyledons in aluminium accumulation as a tolerance strategy in Fagopyrum esculentum Moench (Polygonaceae) seedlings. 子叶在 Fagopyrum esculentum Moench(蓼科)幼苗耐铝积累中的作用。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14554
Verónica Rodríguez-Sánchez, Daniel Tapia-Maruri, Judith Márquez-Guzmán, Sonia Vázquez-Santana, Rocío Cruz-Ortega
{"title":"Role of cotyledons in aluminium accumulation as a tolerance strategy in Fagopyrum esculentum Moench (Polygonaceae) seedlings.","authors":"Verónica Rodríguez-Sánchez, Daniel Tapia-Maruri, Judith Márquez-Guzmán, Sonia Vázquez-Santana, Rocío Cruz-Ortega","doi":"10.1111/ppl.14554","DOIUrl":"https://doi.org/10.1111/ppl.14554","url":null,"abstract":"<p><p>Acidic soils have increased due to agricultural practices, climate factors, and the excessive use of nitrogen fertilizers to meet food demand. In these soils, aluminium (Al) is soluble and can be taken up by roots, but it is toxic to most plant species. Fagopyrum esculentum is able to adapt to acidic toxic aluminium conditions. Anatomical studies identifying novel potential cellular structures as sites of Al accumulation are currently lacking. This study provides an anatomical description of the cotyledons, revealing the presence of papillae and glandular trichomes at their margins. In seedlings treated with 100 μM Al, energy-dispersive x-ray spectroscopy (ESEM-EDS) analysis of the cotyledons revealed that the margin has the highest concentration of Al. The margin containing the epidermal papillae was subjected to laser microdissection, and Al was quantified using mass spectrometry with an inductively coupled plasma source ICP-MS and compared with the Al in the remaining leaf blades. The concentration of Al in the microdissected papillae was 3,460 mg Al kg<sup>-1</sup> Dry Weight (DW), whereas the blades contained only 1,390 mg Al kg<sup>-1</sup> DW. Moreover, histochemical tests for Al and total phenols in the epidermal papillae revealed that Al may be bound to phenolic compounds. Thus, this study demonstrated that the cotyledons of F. esculentum have epidermal papillae that can accumulate Al.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A resource of identified and annotated lincRNAs expressed during somatic embryogenesis development in Norway spruce. 挪威云杉体细胞胚胎发育过程中表达的已识别和注释的 lincRNA 资源。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14537
Camilla Canovi, Katja Stojkovič, Aarón Ayllón Benítez, Nicolas Delhomme, Ulrika Egertsdotter, Nathaniel R Street
{"title":"A resource of identified and annotated lincRNAs expressed during somatic embryogenesis development in Norway spruce.","authors":"Camilla Canovi, Katja Stojkovič, Aarón Ayllón Benítez, Nicolas Delhomme, Ulrika Egertsdotter, Nathaniel R Street","doi":"10.1111/ppl.14537","DOIUrl":"https://doi.org/10.1111/ppl.14537","url":null,"abstract":"<p><p>Long non-coding RNAs (lncRNAs) have emerged as important regulators of many biological processes, although their regulatory roles remain poorly characterized in woody plants, especially in gymnosperms. A major challenge of working with lncRNAs is to assign functional annotations, since they have a low coding potential and low cross-species conservation. We utilised an existing RNA-Sequencing resource and performed short RNA sequencing of somatic embryogenesis developmental stages in Norway spruce (Picea abies L. Karst). We implemented a pipeline to identify lncRNAs located within the intergenic space (lincRNAs) and generated a co-expression network including protein coding, lincRNA and miRNA genes. To assign putative functional annotation, we employed a guilt-by-association approach using the co-expression network and integrated these results with annotation assigned using semantic similarity and co-expression. Moreover, we evaluated the relationship between lincRNAs and miRNAs, and identified which lincRNAs are conserved in other species. We identified lincRNAs with clear evidence of differential expression during somatic embryogenesis and used network connectivity to identify those with the greatest regulatory potential. This work provides the most comprehensive view of lincRNAs in Norway spruce and is the first study to perform global identification of lincRNAs during somatic embryogenesis in conifers. The data have been integrated into the expression visualisation tools at the PlantGenIE.org web resource to enable easy access to the community. This will facilitate the use of the data to address novel questions about the role of lincRNAs in the regulation of embryogenesis and facilitate future comparative genomics studies.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Xylem embolism induced by freeze-thaw and drought are influenced by different anatomical traits in subtropical montane evergreen angiosperm trees. 冻融和干旱引起的木质部栓塞受亚热带山地常绿被子植物不同解剖特征的影响。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14567
Feng Zhang, Yi-Wen Liu, Jie Qin, Steven Jansen, Shi-Dan Zhu, Kun-Fang Cao
{"title":"Xylem embolism induced by freeze-thaw and drought are influenced by different anatomical traits in subtropical montane evergreen angiosperm trees.","authors":"Feng Zhang, Yi-Wen Liu, Jie Qin, Steven Jansen, Shi-Dan Zhu, Kun-Fang Cao","doi":"10.1111/ppl.14567","DOIUrl":"https://doi.org/10.1111/ppl.14567","url":null,"abstract":"<p><p>Subtropical evergreen broadleaved forests distributed in montane zones of southern China experience seasonal droughts and winter frost. Previously, studies have recognized that xylem anatomy is a determinant of its vulnerability to embolism caused by drought and freezing events. We hypothesized that there is a coordination of xylem resistance to freeze-thaw and drought-induced embolism for the subtropical montane evergreen broadleaved tree species because they are influenced by common xylem structural traits (e.g., vessel diameter). We examined the branch xylem anatomy, resistance to drought-induced embolism (P<sub>50</sub>), and the percent loss of branch hydraulic conductivity after a severe winter frost (PLC<sub>winter</sub>) for 15 evergreen broadleaved tree species in a montane forest in South China. Our results showed that P<sub>50</sub> of the studied species ranged from -2.81 to -5.13 MPa, which was not associated with most xylem anatomical properties except for the axial parenchyma-to-vessel connectivity. These tree species differed substantially in PLC<sub>winter</sub>, ranging from 0% to 76.41%. PLC<sub>winter</sub> was positively related to vessel diameter and negatively related to vessel density, vessel group index, and vessel-to-vessel connectivity, but no coordination with P<sub>50</sub>. This study suggests that hydraulic adaptation to frost is important to determine the distributional limit of subtropical montane evergreen woody angiosperms.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the Differences in Polysaccharide and Alkaloid Biosynthesis in the Medicinal Orchids Dendrobium nobile and D. officinale. 洞察药用兰花金钗石斛和欧石斛多糖和生物碱合成的差异
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14575
Yu-Wen Zhang, Yu-Cen Shi, Wei Huang, Shi-Bao Zhang
{"title":"Insights into the Differences in Polysaccharide and Alkaloid Biosynthesis in the Medicinal Orchids Dendrobium nobile and D. officinale.","authors":"Yu-Wen Zhang, Yu-Cen Shi, Wei Huang, Shi-Bao Zhang","doi":"10.1111/ppl.14575","DOIUrl":"https://doi.org/10.1111/ppl.14575","url":null,"abstract":"<p><p>Both Dendrobium nobile and D. officinale are widely used medicinal plants in China and their major medicinal components are alkaloids and polysaccharides, respectively. It is still unclear why these two closely related orchids synthesize and accumulate different chemical components. Here, we investigated the molecular mechanisms underlying polysaccharide and alkaloid biosynthesis in D. nobile and D. officinale through transcriptome and metabolomic analysis at different growth stages. A total of 1267 metabolites were identified in the juvenile and mature stages of the two species. D. nobile accumulated a large number of alkaloids, benzenoids/phenylpropanoids, flavonoids, and terpenoids during the transition from juvenile to mature plants. In contrast, D. officinale accumulated a small number of those metabolites and an absence of flavonoids. The correlation analysis of polysaccharide contents with the differentially expressed genes suggested that the differential expression of GH1, GH3, and GH9 might be related to the difference in polysaccharide contents between the two Dendrobium species. Meanwhile, the difference in the biosynthesis of dendrobine, the main component of alkaloids in D. nobile, was involved in the differential expression of HMGCR, DXR, DXS, ISPH and eight CYP450s. These findings provided new insights into understanding the biosynthetic mechanisms of the main medicinal components in Dendrobium species.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SNP-based QTL mapping and identification of panicle structure-related genes in rice. 基于SNP的QTL图谱和水稻圆锥花序结构相关基因的鉴定
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14588
Jae-Ryoung Park, Jeonghwan Seo, Chang-Min Lee, O-Young Jeong, Mina Jin, Songhee Park, Hyun-Su Park
{"title":"SNP-based QTL mapping and identification of panicle structure-related genes in rice.","authors":"Jae-Ryoung Park, Jeonghwan Seo, Chang-Min Lee, O-Young Jeong, Mina Jin, Songhee Park, Hyun-Su Park","doi":"10.1111/ppl.14588","DOIUrl":"https://doi.org/10.1111/ppl.14588","url":null,"abstract":"<p><p>Rice is a staple crop providing a significant portion of the global food supply. It is then crucial to develop strategies for breeding high-yield cultivars to meet global food security challenges, including the UN's zero-hunger goal. In this study, QTL mapping was employed to pinpoint key genomic regions linked to traits influencing rice yield, with a focus on panicle structure-a critical determinant of grain number. Over two consecutive years, QTLs were identified using 88 JJ625LG/Namchan Recombinant Inbred Lines (JNRILs), revealing several candidate genes. Notably, Gn1a, a known regulator of grain number, was mapped within qNS1 and qNSSr1-1, while the sd1 gene, linked to plant height, was detected across multiple QTLs. Furthermore, a novel gene, OsNSMq3 (Os03g0843800), encoding a methyltransferase, was identified in various QTLs, with haplotype and sequence homology analysis suggesting its role in enhancing yield by influencing panicle structure development. The increase in primary and secondary branches, driven by these genes, leads to a higher number of spikelets per panicle, thereby boosting yield. These findings underscore the potential of candidate genes from stable QTLs as valuable tools in molecular breeding to develop high-yield rice cultivars, addressing global hunger and aiding food supply in refugee crises.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bHLH transcription factor AaMYC2-type positively regulates glandular trichome density and artemisinin biosynthesis in Artemisia annua. 一种 bHLH 转录因子 AaMYC2- 型可正向调节黄花蒿的腺毛密度和青蒿素生物合成。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14581
Rameez Ahmad Khan, Amit Kumar, Nazia Abbas
{"title":"A bHLH transcription factor AaMYC2-type positively regulates glandular trichome density and artemisinin biosynthesis in Artemisia annua.","authors":"Rameez Ahmad Khan, Amit Kumar, Nazia Abbas","doi":"10.1111/ppl.14581","DOIUrl":"https://doi.org/10.1111/ppl.14581","url":null,"abstract":"<p><p>Artemisinin-based combinational therapies (ACTs) constitute the first line of malaria treatment. However, due to its trichome-specific biosynthesis, low concentration, and poor understanding of regulatory mechanisms involved in artemisinin biosynthesis and trichome development, it becomes very difficult to meet the increased demand for ACTs. Here, we have reported that a bHLH transcription factor, AaMYC2-type, plays an important role in regulating GST development and artemisinin biosynthesis in Artemisia annua. AaMYC2-type encodes a protein that is transcriptionally active and localised to the nucleus. It is prominently expressed in aerial parts like leaves, stems, inflorescence and least expressed in roots. AaMYC2-type expression is significantly increased under different hormonal treatments. In transgenic overexpression lines, AaMYC2-type OE, a significant increase in the expression of trichome development and artemisinin biosynthesis genes was observed. While in knockdown lines, Aamyc2-type, expression of trichome development and artemisinin biosynthesis genes were significantly reduced. Yeast one-hybrid assay clearly shows that the AaMYC2-type directly binds to the E-boxes in the promoter regions of ADS and CYP71AVI. The SEM microscopy depicted the number of trichomes elevated from 11 mm<sup>-2</sup> in AaMYC2-type OE lines to 6.1 mm<sup>-2</sup> in Aamyc2-type. The final effect of the alteration in biosynthetic and trichome developmental genes was observed in the accumulation of artemisinin. In the AaMYC2-type OE, the artemisinin content was 12 mg g<sup>-1</sup>DW, which was reduced to 3.2 mg g<sup>-1</sup>DW in the Aamyc2-type. Altogether, the above findings suggest that the AaMYC2-type play a dual regulating role in controlling both trichome developmental and artemisinin biosynthetic genes.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信