Physiologia plantarum最新文献

筛选
英文 中文
Identification and characterization of a key LcTPS in the biosynthesis of volatile monoterpenes and sesquiterpenes in Litchi fruit. 荔枝果中挥发性单萜和倍半萜生物合成过程中关键 LcTPS 的鉴定和特征描述。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14559
Liyu Fu, Qiuzi Chen, Yawen Li, Yanlan Li, Xuequn Pang, Zhaoqi Zhang, Fang Fang
{"title":"Identification and characterization of a key LcTPS in the biosynthesis of volatile monoterpenes and sesquiterpenes in Litchi fruit.","authors":"Liyu Fu, Qiuzi Chen, Yawen Li, Yanlan Li, Xuequn Pang, Zhaoqi Zhang, Fang Fang","doi":"10.1111/ppl.14559","DOIUrl":"https://doi.org/10.1111/ppl.14559","url":null,"abstract":"<p><p>Litchi (Litchi chinensis Sonn.) has a desirable sweet taste and exotic aroma, making it popular in the markets. However, the biosynthesis of aroma volatiles in litchi fruit has rarely been investigated. In this study, the content and composition of volatile compounds were determined during litchi fruit ripening. In the mature green and mature red stages of litchi, 49 and 45 volatile compounds were detected, respectively. Monoterpenes were found to be the most abundant volatile compounds in mature red fruit, and their contents significantly increased compared to green fruit, mainly including citronellol, geraniol, myrcene, and D-limonene, which contributed to the aroma in litchi fruit. By comparing the expression profiles of the genes involved in the terpene synthesis pathway during fruit development, a terpene synthesis gene (LcTPS1-2) was identified and characterized as a major player in the synthesis of monoterpenes and sesquiterpenes. A subcellular localization analysis found LcTPS1-2 to be present in the plastid and cytoplasm. The recombinant LcTPS1-2 enzyme was able to catalyze the formation of three monoterpenes, myrcene, geraniol and citral, from geranyl pyrophosphate (GPP) and to convert farnesyl diphosphate (FPP) to a sesquiterpene, caryophyllene in vitro. Transgenic Arabidopsis thaliana plants overexpressing LcTPS1-2 exclusively released one monoterpene D-limonene, and three sesquiterpenes cis-thujopsene, (E)-β-famesene and trans-β-ionone. These results indicate that LcTPS1-2 plays an important role in the production of major volatile terpenes in litchi fruit and provides a basis for future investigations of terpenoid biosynthesis in litchi and other horticultural crops.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GhJUB1_3-At positively regulate drought and salt stress tolerance under control of GhHB7, GhRAP2-3 and GhRAV1 in Cotton. 在 GhHB7、GhRAP2-3 和 GhRAV1 的调控下,GhJUB1_3-At 可正向调节棉花的干旱和盐胁迫耐受性。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14497
Adeel Ahmad, Muhammad Sajjad, Salisu Bello Sadau, Mohammad Elasad, Lu Sun, Yuewei Quan, Aimin Wu, Lian Boying, Fei Wei, Hongmei Wu, Pengyun Chen, Xiaokang Fu, Liang Ma, Hantao Wang, Hengling Wei, Shuxun Yu
{"title":"GhJUB1_3-At positively regulate drought and salt stress tolerance under control of GhHB7, GhRAP2-3 and GhRAV1 in Cotton.","authors":"Adeel Ahmad, Muhammad Sajjad, Salisu Bello Sadau, Mohammad Elasad, Lu Sun, Yuewei Quan, Aimin Wu, Lian Boying, Fei Wei, Hongmei Wu, Pengyun Chen, Xiaokang Fu, Liang Ma, Hantao Wang, Hengling Wei, Shuxun Yu","doi":"10.1111/ppl.14497","DOIUrl":"10.1111/ppl.14497","url":null,"abstract":"<p><p>Climate change severely affects crop production. Cotton is one of the primary fiber crops in the world and its production is susceptible to various environmental stresses, especially drought and salinity. Development of stress tolerant genotypes is the only way to escape from these environmental constraints. We identified sixteen homologs of the Arabidopsis JUB1 gene in cotton. Expression of GhJUB1_3-At was significantly induced in the temporal expression analysis of GhJUB1 genes in the roots of drought tolerant (H177) and susceptible (S9612) cotton genotypes under drought. The silencing of the GhJUB1_3-At gene alone and together with its paralogue GhJUB1_3-Dt reduced the drought tolerance in cotton plants. The transgenic lines exhibited tolerance to the drought and salt stress as compared to the wildtype (WT). The chlorophyll and relative water contents of wildtype decreased under drought as compared to the transgenic lines. The transgenic lines showed decreased H<sub>2</sub>O<sub>2</sub> and increased proline levels under drought and salt stress, as compared to the WT, indicating that the transgenic lines have drought and salt stress tolerance. The expression analysis of the transgenic lines and WT revealed that GAI was upregulated in the transgenic lines in normal conditions as compared to the WT. Under drought and salt treatment, RAB18 and RD29A were strongly upregulated in the transgenic lines as compared to the WT. Conclusively, GhJUB1_3-At is not an auto activator and it is regulated by the crosstalk of GhHB7, GhRAP2-3 and GhRAV1. GhRAV1, a negative regulator of abiotic stress tolerance and positive regulator of leaf senescence, suppresses the expression of GhJUB1_3-At under severe circumstances leading to plant death.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant Growth Promoting Rhizobacteria (PGPR) induced protection: A plant immunity perspective. 植物生长促进根瘤菌(PGPR)诱导保护:植物免疫的视角。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14495
Rinkee Kumari, Ekta Pandey, Sayyada Bushra, Shahla Faizan, Saurabh Pandey
{"title":"Plant Growth Promoting Rhizobacteria (PGPR) induced protection: A plant immunity perspective.","authors":"Rinkee Kumari, Ekta Pandey, Sayyada Bushra, Shahla Faizan, Saurabh Pandey","doi":"10.1111/ppl.14495","DOIUrl":"10.1111/ppl.14495","url":null,"abstract":"<p><p>Plant-environment interactions, particularly biotic stress, are increasingly essential for global food security due to crop losses in the dynamic environment. Therefore, understanding plant responses to biotic stress is vital to mitigate damage. Beneficial microorganisms and their association with plants can reduce the damage associated with plant pathogens. One such group is PGPR (Plant growth-promoting rhizobacteria), which influences plant immunity significantly by interacting with biotic stress factors and plant signalling compounds. This review explores the types, metabolism, and mechanisms of action of PGPR, including their enzyme pathways and the signalling compounds secreted by PGPR that modulate gene and protein expression during plant defence. Furthermore, the review will delve into the crosstalk between PGPR and other plant growth regulators and signalling compounds, elucidating the physiological, biochemical, and molecular insights into PGPR's impact on plants under multiple biotic stresses, including interactions with fungi, bacteria, and viruses. Overall, the review comprehensively adds to our knowledge about PGPR's role in plant immunity and its application for agricultural resilience and food security.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide identification of sweet potato U-Box E3 ubiquitin ligases and roles of IbPUB52 in negative regulation of drought stress. 甘薯 U-Box E3 泛素连接酶的全基因组鉴定以及 IbPUB52 在干旱胁迫负调控中的作用。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14568
Shanwu Lyu, Yaping Mao, Yi Zhang, Tianli Yu, Xuangang Yang, Hongbo Zhu, Shulin Deng
{"title":"Genome-wide identification of sweet potato U-Box E3 ubiquitin ligases and roles of IbPUB52 in negative regulation of drought stress.","authors":"Shanwu Lyu, Yaping Mao, Yi Zhang, Tianli Yu, Xuangang Yang, Hongbo Zhu, Shulin Deng","doi":"10.1111/ppl.14568","DOIUrl":"https://doi.org/10.1111/ppl.14568","url":null,"abstract":"<p><p>The plant U-box (PUB) proteins, a family of ubiquitin ligases (E3) enzymes, are pivotal in orchestrating many biological processes and facilitating plant responses to environmental stressors. Despite their critical roles, exploring the PUB gene family's characteristics and functional diversity in sweet potato (Ipomoea batatas (L.) Lam.) has been notably limited. There were 81 IbPUB genes identified within the sweet potato genome, and they were categorized into eight distinct groups based on domain architecture, revealing a non-uniform distribution across the 15 chromosomes of I. batatas. The investigation of cis-acting elements has shed light on the potential of PUBs to participate in a wide array of biological processes, particularly emphasizing their role in mediating responses to abiotic stresses. Transcriptome profiles revealed that IbPUB genes displayed a wide range of expression levels among different tissues and were regulated by salt or drought stress. IbPUB52 has emerged as a gene of significant interest due to its induction by salt and drought stresses. Localization studies have confirmed the presence of IbPUB52 in both the nucleus and the cytoplasm, and its ubiquitination activity has been validated through rigorous in vitro and in vivo assays. Intriguingly, the heterogeneous expression of IbPUB52 in Arabidopsis resulted in decreased drought tolerance. The virus-induced gene silencing (VIGS) of IbPUB52 in sweet potatoes led to enhanced resistance to drought. This evidence suggests that IbPUB52 negatively regulates the drought tolerance of plants. The findings of this study are instrumental in advancing our comprehension of the functional dynamics of PUB E3 ubiquitin ligases in sweet potatoes.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In the Spotlight: The plant growth-defence dilemma: a hormonal balancing act. 聚焦:植物生长与防御的困境:荷尔蒙的平衡作用。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14557
Sokol Toçilla
{"title":"In the Spotlight: The plant growth-defence dilemma: a hormonal balancing act.","authors":"Sokol Toçilla","doi":"10.1111/ppl.14557","DOIUrl":"https://doi.org/10.1111/ppl.14557","url":null,"abstract":"","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of clerodane diterpene modifying cytochrome P450 (CYP728D26) in Salvia divinorum - en route to psychotropic salvinorin A biosynthesis. 鉴定丹参中的clerodane二萜修饰细胞色素P450(CYP728D26)--精神药物丹参素A的生物合成途径。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14569
Iris Ngo, Rahul Kumar, Liang Li, Seon-Won Kim, Moonhyuk Kwon, Dae-Kyun Ro
{"title":"Identification of clerodane diterpene modifying cytochrome P450 (CYP728D26) in Salvia divinorum - en route to psychotropic salvinorin A biosynthesis.","authors":"Iris Ngo, Rahul Kumar, Liang Li, Seon-Won Kim, Moonhyuk Kwon, Dae-Kyun Ro","doi":"10.1111/ppl.14569","DOIUrl":"https://doi.org/10.1111/ppl.14569","url":null,"abstract":"<p><p>Salvia divinorum is a hallucinogenic plant native to the Oaxaca in Mexico. The active ingredient for psychotropic effects in this plant is salvinorin A, a potent and highly selective κ-opioid receptor agonist. Salvinorin A is distinct from other well-known opioids, such as morphine and codeine, in that it is a non-nitrogenous diterpenoid with no affinity for μ-opioid receptor, the prime receptor of alkaloidal opioids. A terpene opioid that selectively targets a new opioid receptor (κ-opioid receptor) can be instrumental in developing alternative analgesics. Elucidation of the salvinorin A biosynthetic pathway can help bio-manufacture diverse semi-synthetic derivatives of salvinorin A but, to date, only two enzymes in the Salvinorin A pathway have been identified. Here, we identify CYP728D26 that catalyzes a C18 oxygenation on crotonolide G, which bears a clerodane backbone. Biochemical identity of CYP728D26 was validated by in vivo reconstitution in yeast, <sup>1</sup>H- and <sup>13</sup>C-NMR analyses of the purified product, and kinetic analysis of CYP728D26 with a K<sub>m</sub> value of 13.9 μM. Beyond the single oxygenation on C18, collision-induced dissociation analysis suggested two additional oxygenations are catalyzed by CYP728D26 to form crotonoldie G acid, although this carboxylic acid form is a minor product. Its close homologue CYP728D25 exhibited a C1-hydroxylation on the clerodane backbone in a reconstituted yeast system. However, CYP728D25 showed no activity in in vitro assays. This result implies that catalytic activities observed from overexpression systems should be interpreted cautiously. This work identified a new CYP catalyst and advanced our knowledge of salvinorin A biosynthesis.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fungal endophyte increases plant resilience to low nutrient availabilities: a case of Fe acquisition in legumes. 真菌内生菌提高植物对低养分利用率的适应能力:豆科植物获取铁的案例。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14577
Marianna Avramidou, Vasileios Balaktsis, Olga Tsiouri, Moez Maghrebi, Gianpiero Vigani, Antonios Sergiou, Nikolaos Ntelkis, Constantinos Ehaliotis, Kalliope K Papadopoulou
{"title":"A fungal endophyte increases plant resilience to low nutrient availabilities: a case of Fe acquisition in legumes.","authors":"Marianna Avramidou, Vasileios Balaktsis, Olga Tsiouri, Moez Maghrebi, Gianpiero Vigani, Antonios Sergiou, Nikolaos Ntelkis, Constantinos Ehaliotis, Kalliope K Papadopoulou","doi":"10.1111/ppl.14577","DOIUrl":"https://doi.org/10.1111/ppl.14577","url":null,"abstract":"<p><p>Microbial inocula are considered a promising and effective alternative solution to the use of chemical fertilizers to support plant growth and productivity since they play a key role in the availability and uptake of nutrients. Here, the effect of a beneficial of a fungal root endophyte, Fusarium solani strain K (FsK), on nutrient acquisition efficiency of the legume Lotus japonicus was studied, and putative mode-of-action of the endophyte at a molecular level was determined. Plant colonization with the endophyte resulted in increased shoot and root fresh weight under Fe deficiency compared to control nutrient conditions. Plant inoculation with FsK was associated with a significant increase in macro- and micronutrient concentration in leaves at an early stage of endophyte inoculation and a replenishment of Fe content under prolonged iron starvation. The mechanistic basis of the plant growth promotion capabilities of the endophyte is exerted at the transcriptional level since we recorded changes in the expression levels of genes related to iron uptake in FsK-colonized plants under stress conditions compared to uninoculated plants. In addition, the observed changes in the ethylene biosynthesis-related genes suggest a possible implication of ethylene in the mode of action used by FsK to enhance plant response to nutrient stress conditions. Finally, we demonstrated that the endophyte possesses a reductive high-affinity Fe uptake system and identified a ferric reductase that was induced in planta under Fe deficiency conditions, indicating that this fungal Fe homeostasis mechanism may result in a benefit in nutrient acquisition for the plant as well.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monocultures vs. polyculture of microalgae: unveiling physiological changes to facilitate growth in ammonium rich-medium. 微藻的单培与多培:揭示生理变化以促进在富氨介质中的生长。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14574
Lorenzo Mollo, Alessandra Petrucciani, Alessandra Norici
{"title":"Monocultures vs. polyculture of microalgae: unveiling physiological changes to facilitate growth in ammonium rich-medium.","authors":"Lorenzo Mollo, Alessandra Petrucciani, Alessandra Norici","doi":"10.1111/ppl.14574","DOIUrl":"https://doi.org/10.1111/ppl.14574","url":null,"abstract":"<p><p>Due to the increasing production of wastewater from human activities, the use of algal consortia for phytoremediation has become well-established over the past decade. Understanding how interspecific interactions and cultivation modes (monocultures vs. polyculture) influence algal growth and behaviour is a cutting-edge topic in both fundamental and applied science. Ammonium-rich growth media were used to challenge the monocultures of Auxenochlorella protothecoides, Chlamydomonas reinhardtii and Tetradesmus obliquus, as well as their polyculture; NO<sub>3</sub> <sup>-</sup> was also used as the sole nitrogen chemical form in control cultures. The study primarily compared the growth, carbon and nitrogen metabolisms, and protein content of the green microalgae monocultures to those of their consortium. Overall, the cultivation mode significantly affected all the measured parameters. Notably, at 50 mM NH<sub>4</sub> <sup>+</sup>, the assimilation rates of carbon and nitrogen were at least twice as high as those in the monoculture counterparts, and the protein content was three times more abundant.Additionally, the consortium's response to NH<sub>4</sub> <sup>+</sup> toxicity was investigated by observing a linear relationship between the indicator of tolerance to NH<sub>4</sub> <sup>+</sup> nutrition and the N isotopic signature. The study highlighted a high degree of acclimation through metabolic flexibility and diversity, as well as species abundance plasticity in the consortium, resulting in a functional resilience that would otherwise have been unattainable by the respective monocultures.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of autophagy gene family in potato and the role of StATG8a in salt and drought stress. 马铃薯自噬基因家族的鉴定及 StATG8a 在盐胁迫和干旱胁迫中的作用
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14584
Xi Zhu, Yasir Majeed, Ning Zhang, Wei Li, Huimin Duan, Xuemei Dou, Hui Jin, Zhuo Chen, Shu Chen, Jiannan Zhou, Qihua Wang, Jinghua Tang, Yu Zhang, Huaijun Si
{"title":"Identification of autophagy gene family in potato and the role of StATG8a in salt and drought stress.","authors":"Xi Zhu, Yasir Majeed, Ning Zhang, Wei Li, Huimin Duan, Xuemei Dou, Hui Jin, Zhuo Chen, Shu Chen, Jiannan Zhou, Qihua Wang, Jinghua Tang, Yu Zhang, Huaijun Si","doi":"10.1111/ppl.14584","DOIUrl":"https://doi.org/10.1111/ppl.14584","url":null,"abstract":"<p><p>Autophagy is a highly conserved method of recycling cytoplasm components in eukaryotes. It plays an important role in plant growth and development, as well as in response to biotic and abiotic stresses. Although autophagy-related genes (ATGs) have been identified in several crop species, their particular role in potato (Solanum tuberosum L.) remains unclear. Several transcription factors and signaling genes in the transgenic lines of the model plant Arabidopsis thaliana, such as AtTSPO, AtBES1, AtPIP2;7, AtCOST1 as well as AtATI1/2, ATG8f, GFP-ATG8F-HA, AtDSK2, AtNBR1, AtHKT1 play crucial functions under drought and salt stresses, respectively. In this study, a total of 29 putative StATGs from 15 different ATG subfamilies in the potato genome were identified. Their physicochemical properties, evolutionary connections, chromosomal distribution, gene duplication, protein-protein interaction network, conserved motifs, gene structure, interspecific collinearity relationship, and cis-regulatory elements were analyzed. The results of qRT-PCR detection of StATG expression showed that 29 StATGs were differentially expressed in potato's leaves, flowers, petiole, stem, stolon, tuber, and root. StATGs were dynamically modulated by salt and drought stresses and up-regulated under salt and drought conditions. Our results showed that the StATG8a localized in the cytoplasm and the nucleus. Potato cultivar \"Atlantic\" overexpressing or downregulating StATG8a were constructed. Based on physiological, biochemical, and photosynthesis parameters, potato lines overexpressing StATG8a exhibited 9 times higher drought and salt tolerance compared to non-transgenic plants. In contrast, the potato plants with knockdown expression showed a downtrend in drought and salt tolerance compared to non-transgenic potato lines. These results could provide new insights into the function of StATG8a in salt and drought response and its possible mechanisms.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rye-durum wheat 1BL.1RS translocation: implications for drought tolerance and nutritional status. 黑麦-杜伦麦 1BL.1RS 易位:对耐旱性和营养状况的影响。
IF 5.4 2区 生物学
Physiologia plantarum Pub Date : 2024-09-01 DOI: 10.1111/ppl.14579
Giulia Quagliata, Moez Maghrebi, Miriam Marín-Sanz, Samuela Palombieri, Francesco Sestili, Domenico Lafiandra, Francisco Barro, Gianpiero Vigani, Stefania Astolfi
{"title":"Rye-durum wheat 1BL.1RS translocation: implications for drought tolerance and nutritional status.","authors":"Giulia Quagliata, Moez Maghrebi, Miriam Marín-Sanz, Samuela Palombieri, Francesco Sestili, Domenico Lafiandra, Francisco Barro, Gianpiero Vigani, Stefania Astolfi","doi":"10.1111/ppl.14579","DOIUrl":"https://doi.org/10.1111/ppl.14579","url":null,"abstract":"<p><p>The translocation of the short chromosome arm 1RS of rye onto the 1B chromosome of common wheat has been shown to improve resistance to stress and yield. Here, translocation was operated in durum wheat and its effects on drought tolerance were evaluated. Both the 1BL.1RS translocation line (Svevo 1BL.1RS) and the corresponding Svevo control were exposed to drought for 7 days. Significant differences were found in root morphology between Svevo and Svevo 1BL.1RS under control and drought conditions. Although Svevo 1BL.1RS experienced more severe growth inhibition due to drought than Svevo, it exhibited greater resilience to oxidative stress. Furthermore, several drought-responsive genes were upregulated in both shoots and roots only in the translocation line. Notably, in roots of Svevo 1BL.1RS, the expression of these genes was also higher in the control condition compared to Svevo, suggesting that these genes could be constitutively expressed at higher levels in the translocation line. Moreover, the 1BL.1RS translocation had a significant impact on the plant's ability to accumulate nutrients under drought. Overall, the impact on sulfate accumulation and the expression of genes associated with its assimilation pathways are particularly noteworthy, highlighting the involvement of sulfur in the plant response to water stress. Additionally, the genetic characterization of Svevo 1BL.1RS revealed variants extending beyond the translocation, located in drought stress-responsive genes.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信