Joanna M Chustecki, Alora Q Schneider, Madeleine H Faber, Bara Altartouri, Alan C Christensen
{"title":"空运行:没有DNA的线粒体表现出不同的运动性和连通性。","authors":"Joanna M Chustecki, Alora Q Schneider, Madeleine H Faber, Bara Altartouri, Alan C Christensen","doi":"10.1111/ppl.70404","DOIUrl":null,"url":null,"abstract":"<p><p>Plant mitochondria are in continuous motion. While providing ATP to other cellular processes, they also constantly consume ATP to move rapidly within the cell. This movement is in part related to taking up, converting and delivering metabolites and energy to and from different parts of the cell. Plant mitochondria have varying amounts of DNA, even within a single cell, from none to the full mitochondrial genome. Because mitochondrial dynamics are altered in an Arabidopsis mutant with disrupted DNA maintenance, we hypothesised that exchanging DNA templates for repair is one of the functions of their movement and interactions. Here, we image mitochondrial DNA by two distinct methods while tracking mitochondrial position to investigate differences in the behaviour of mitochondria with and without DNA in Arabidopsis thaliana. In addition to staining mitochondrial DNA with SYBR Green, we have developed and implemented a fluorescent mitochondrial DNA binding protein that will enable future understanding of mitochondrial dynamics, genome maintenance and replication. We demonstrate that mitochondria without mtDNA have altered physical behaviour and lower immediate connectivity to the rest of the population, further supporting a link between the physical and genetic dynamics of these complex organelles.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 4","pages":"e70404"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257277/pdf/","citationCount":"0","resultStr":"{\"title\":\"(ID-ICPMB05) Running on Empty: Mitochondria Without DNA Exhibit Differential Motility and Connectivity.\",\"authors\":\"Joanna M Chustecki, Alora Q Schneider, Madeleine H Faber, Bara Altartouri, Alan C Christensen\",\"doi\":\"10.1111/ppl.70404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant mitochondria are in continuous motion. While providing ATP to other cellular processes, they also constantly consume ATP to move rapidly within the cell. This movement is in part related to taking up, converting and delivering metabolites and energy to and from different parts of the cell. Plant mitochondria have varying amounts of DNA, even within a single cell, from none to the full mitochondrial genome. Because mitochondrial dynamics are altered in an Arabidopsis mutant with disrupted DNA maintenance, we hypothesised that exchanging DNA templates for repair is one of the functions of their movement and interactions. Here, we image mitochondrial DNA by two distinct methods while tracking mitochondrial position to investigate differences in the behaviour of mitochondria with and without DNA in Arabidopsis thaliana. In addition to staining mitochondrial DNA with SYBR Green, we have developed and implemented a fluorescent mitochondrial DNA binding protein that will enable future understanding of mitochondrial dynamics, genome maintenance and replication. We demonstrate that mitochondria without mtDNA have altered physical behaviour and lower immediate connectivity to the rest of the population, further supporting a link between the physical and genetic dynamics of these complex organelles.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 4\",\"pages\":\"e70404\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257277/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70404\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70404","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
(ID-ICPMB05) Running on Empty: Mitochondria Without DNA Exhibit Differential Motility and Connectivity.
Plant mitochondria are in continuous motion. While providing ATP to other cellular processes, they also constantly consume ATP to move rapidly within the cell. This movement is in part related to taking up, converting and delivering metabolites and energy to and from different parts of the cell. Plant mitochondria have varying amounts of DNA, even within a single cell, from none to the full mitochondrial genome. Because mitochondrial dynamics are altered in an Arabidopsis mutant with disrupted DNA maintenance, we hypothesised that exchanging DNA templates for repair is one of the functions of their movement and interactions. Here, we image mitochondrial DNA by two distinct methods while tracking mitochondrial position to investigate differences in the behaviour of mitochondria with and without DNA in Arabidopsis thaliana. In addition to staining mitochondrial DNA with SYBR Green, we have developed and implemented a fluorescent mitochondrial DNA binding protein that will enable future understanding of mitochondrial dynamics, genome maintenance and replication. We demonstrate that mitochondria without mtDNA have altered physical behaviour and lower immediate connectivity to the rest of the population, further supporting a link between the physical and genetic dynamics of these complex organelles.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.