{"title":"Induction of Endoplasmic Reticulum Stress and Aryl Hydrocarbon Receptor Pathway Expression by Blue LED Irradiation in Oral Squamous Cell Carcinoma","authors":"Hui Jiang, Jiali Yang, Qiqi Fu, Angze Li, Haokuan Qin, Muqing Liu","doi":"10.1002/jbio.202400226","DOIUrl":"10.1002/jbio.202400226","url":null,"abstract":"<div>\u0000 \u0000 <p>Photobiomodulation therapy, as an emerging treatment modality, has been widely used in dentistry. However, reports on blue light therapy for oral cancer are scarce. This study investigated the effects of 457 and 475 nm LED irradiation on SCC-25 cells and explored the potential mechanisms underlying the impact of blue light. Both wavelengths were found to inhibit cell viability, induce oxidative stress, and cause cell cycle arrest without leading to cell death. Notably, the inhibitory effect of 457 nm blue light on cell proliferation was more sustained. Transcriptome sequencing was performed to explore the underlying mechanisms, revealing that blue light induced endoplasmic reticulum stress in SCC-25 cells, with 457 nm light showing a more pronounced effect. Moreover, 457 nm blue light upregulated the expression of the aryl hydrocarbon receptor pathway, indicating potential therapeutic prospects for the combined use of blue light and pharmacological agents.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ekaterina Ryzhkova, Tatyana Morgunova, Elena Potapova, Ivan Ryzhkov, Valentin Fadeyev
{"title":"Fluorescence Spectroscopy With Temperature Functional Tests in the Assessment of Markers of Intracellular Energy Metabolism: Spatial Heterogeneity and Reproducibility of Measurements","authors":"Ekaterina Ryzhkova, Tatyana Morgunova, Elena Potapova, Ivan Ryzhkov, Valentin Fadeyev","doi":"10.1002/jbio.202400294","DOIUrl":"10.1002/jbio.202400294","url":null,"abstract":"<div>\u0000 \u0000 <p>The fluorescence intensities of the cellular respiratory cofactors NADH (reduced nicotinamide adenine dinucleotide) and FAD<sup>++</sup> (oxidized flavin adenine dinucleotide) reflect energy metabolism in skin and other tissues and can be quantified in vivo by fluorescence spectroscopy (FS). However, the variability of physiological parameters largely determines the reproducibility of measurement results and the reliability of the diagnostic test. In this prospective study, we evaluated the interday reproducibility of NADH and FAD<sup>++</sup> fluorescence intensity measurements in the skin of 51 healthy volunteers assessed by the FS at baseline, after local cooling (10°C) and heating of the skin (35°C). Results showed that the fluorescence amplitude of NADH (AF<sub>NADH</sub>) in forearm skin was the most reproducible of the FS parameters studied. Assessment of AF<sub>NADH</sub> in the dorsal forearm in combination with a thermal functional test is the most promising method for clinical use for assessing energy metabolism in the skin.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Martinez Jimenez, R. Cernat, A. Bradu, R. Riha, E. A. Proano Grijalva, B. O. Meyer, T. Ansbaek, K. Yvind, A. Podoleanu
{"title":"Downconversion Master Slave OCT With a Bidirectional Sweeping Laser","authors":"A. Martinez Jimenez, R. Cernat, A. Bradu, R. Riha, E. A. Proano Grijalva, B. O. Meyer, T. Ansbaek, K. Yvind, A. Podoleanu","doi":"10.1002/jbio.202400201","DOIUrl":"https://doi.org/10.1002/jbio.202400201","url":null,"abstract":"This paper explores the challenges of signal processing when using optical coherence tomography (OCT) imaging instruments driven by asymmetric MHz bidirectional sweeping lasers. A downconversion master–slave (DMS) method is proposed as a viable alternative to the traditional OCT protocol. Unlike conventional swept source OCT, which requires a separate calibration for each sweep, the DMS approach does not require calibration of the acquired channeled spectra; its operation is independent of the tuning direction. We demonstrate the practicality of the DMS method with en‐face OCT images obtained with an OCT instrument equipped with a fast bidirectional swept laser (tuning speed 1.6 MHz) and a slow acquisition card of only 2.5 MS/s sampling rate.","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Motion Artifact Correction for OCT Microvascular Images Based on Image Feature Matching","authors":"Xudong Chen, Zongqing Ma, Chongyang Wang, Jiaqi Cui, Fan Fan, Xinxiao Gao, Jiang Zhu","doi":"10.1002/jbio.202400198","DOIUrl":"10.1002/jbio.202400198","url":null,"abstract":"<div>\u0000 \u0000 <p>Optical coherence tomography angiography (OCTA), a functional extension of optical coherence tomography (OCT), is widely employed for high-resolution imaging of microvascular networks. However, due to the relatively low scan rate of OCT, the artifacts caused by the involuntary bulk motion of tissues severely impact the visualization of microvascular networks. This study proposes a fast motion correction method based on image feature matching for OCT microvascular images. First, the rigid motion-related mismatch between B-scans is compensated through the image feature matching based on the improved oriented FAST and rotated BRIEF algorithm. Then, the axial motion within A-scan lines in each B-scan image is corrected according to the displacement deviation between the detected boundaries achieved by the Scharr operator in a non-rigid transformation manner. Finally, an optimized intensity-based Doppler variance algorithm is developed to enhance the robustness of the OCTA imaging. The experimental results demonstrate the effectiveness of the method.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingdong Zhang, Peng Liu, Pengfei Shao, Mingzhai Sun, Peng Yao, Shuwei Shen, Yang Zhang, Ming Wu, Ronald X. Xu
{"title":"Dual-Modal Optical Imaging of Tissue Perfusion in Response to Cooling Stimulation Facilitates Early Detection of Pressure Ulcer","authors":"Qingdong Zhang, Peng Liu, Pengfei Shao, Mingzhai Sun, Peng Yao, Shuwei Shen, Yang Zhang, Ming Wu, Ronald X. Xu","doi":"10.1002/jbio.202400188","DOIUrl":"10.1002/jbio.202400188","url":null,"abstract":"<div>\u0000 \u0000 <p>Pressure ulcers present a significant human and economic challenge, lacking a reliable method for early detection. To address this, we developed a system capable of early detection by using cooling stimulation and dynamic data acquisition techniques to monitor blood perfusion and skin temperature. The system consists of laser speckle perfusion imaging and thermal imaging. And we performed simulations to demonstrate that the system is capable of detect tissue damage across multiple layers, from superficial to deep. Testing on a rabbit ear model demonstrated that this approach, which combines dynamic perfusion and temperature parameters, effectively distinguishes early pressure ulcer areas from normal skin with a significant <i>p</i> value of 0.0015. This distinction was more precise compared to methods relying solely on static parameters or one parameter. Our study thereby offers a promising advancement in the proactive management and prevention of pressure ulcers.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marina Bertoni Guerra, Kelly Gomes Santana, Marcos Momolli, Rodrigo Labat, Maria Cristina Chavantes, Stella Regina Zammuner, José Antonio Silva Júnior, Renata Kelly da Palma, Flavio Aimbire, Ana Paula Ligeiro de Oliveira
{"title":"Effect of photobiomodulation in an experimental in vitro model of asthma-Copd overlap","authors":"Marina Bertoni Guerra, Kelly Gomes Santana, Marcos Momolli, Rodrigo Labat, Maria Cristina Chavantes, Stella Regina Zammuner, José Antonio Silva Júnior, Renata Kelly da Palma, Flavio Aimbire, Ana Paula Ligeiro de Oliveira","doi":"10.1002/jbio.202400124","DOIUrl":"10.1002/jbio.202400124","url":null,"abstract":"<p>The objective of the study was to evaluate the effect of photobiomodulation (PBM) with laser on the inflammatory process in an experimental in vitro model of ACO. The groups were: (1) human bronchial epithelial cells (BEAS-2B); (2) BEAS-2B cells treated with dexamethasone; (3) BEAS-2B cells irradiated with laser; (4) BEAS-2B cells stimulated with cigarette smoke extract (CSE) + House Dust Mite (HDM); (5) BEAS-2B cells stimulated with CSE + HDM and treated with dexamethasone; (6) BEAS-2B cells incubated with CSE + HDM and irradiated with laser. After 24 h, cytokines were quantified. There was a reduction in TNF-α, IL-1β, IL-6, IL-4, IL-5, IL-13, IL-17, IL-21, IL-23, and an increase in IL-10 and IFN-γ in cells from the laser-irradiated ACO group compared to only ACO group. With these results, we can suggest that photobiomodulation acts in the modulation of inflammation observed in ACO, and may be a treatment option.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Beibei Kong, Reinhold Blümel, Pasi Ylä-Oijala, Henrik Wallén, Ari Sihvola, Achim Kohler
{"title":"Signatures of top versus bottom illuminations and their predicted implications for infrared transmission microspectroscopy","authors":"Beibei Kong, Reinhold Blümel, Pasi Ylä-Oijala, Henrik Wallén, Ari Sihvola, Achim Kohler","doi":"10.1002/jbio.202400079","DOIUrl":"10.1002/jbio.202400079","url":null,"abstract":"<p>Since both top and bottom illuminations are widely used in infrared transmission measurements, in this paper, we study the effects of different illuminations on the signatures in infrared microspectroscopy. By simulating a series of dielectric samples, we show that their extinction efficiency, <span></span><math>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Q</mi>\u0000 <mi>ext</mi>\u0000 </msub>\u0000 </mrow></math>, remains unchanged when the direction of the incident plane wave is reversed, even though the field distributions both inside and outside of the sample may be dramatically different. We find features in <span></span><math>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Q</mi>\u0000 <mi>ext</mi>\u0000 </msub>\u0000 </mrow></math> that are correlated with whispering gallery modes for one beam direction and correspond to completely different field distributions for the opposite beam direction. In addition, by linking the optical theorem and the reciprocity relation of far-field scattered field, we rigorously prove the invariance of <span></span><math>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Q</mi>\u0000 <mi>ext</mi>\u0000 </msub>\u0000 </mrow></math> for arbitrary dielectric targets under opposite plane-wave illuminations. Furthermore, we show the difference in the apparent absorbance spectrum for opposite beam directions when considering numerical apertures.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400079","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farzana R. Zaki, Guillermo L. Monroy, Jindou Shi, Kavya Sudhir, Stephen A. Boppart
{"title":"Texture-based speciation of otitis media-related bacterial biofilms from optical coherence tomography images using supervised classification","authors":"Farzana R. Zaki, Guillermo L. Monroy, Jindou Shi, Kavya Sudhir, Stephen A. Boppart","doi":"10.1002/jbio.202400075","DOIUrl":"10.1002/jbio.202400075","url":null,"abstract":"<p>Otitis media (OM), a highly prevalent inflammatory middle-ear disease in children worldwide, is commonly caused by an infection, and can lead to antibiotic-resistant bacterial biofilms in recurrent/chronic OM cases. A biofilm related to OM typically contains one or multiple bacterial species. OCT has been used clinically to visualize the presence of bacterial biofilms in the middle ear. This study used OCT to compare microstructural image texture features from bacterial biofilms. The proposed method applied supervised machine-learning-based frameworks (SVM, random forest, and XGBoost) to classify multiple species bacterial biofilms from in vitro cultures and clinically-obtained in vivo images from human subjects. Our findings show that optimized SVM-RBF and XGBoost classifiers achieved more than 95% of AUC, detecting each biofilm class. These results demonstrate the potential for differentiating OM-causing bacterial biofilms through texture analysis of OCT images and a machine-learning framework, offering valuable insights for real-time in vivo characterization of ear infections.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-color two-laser super-resolution structured illumination microscopy for the visualization of multi-organelle in living cells","authors":"Xuejuan Hu, Yadan Tan, Yujie Huang, Jianze Ye, Yifei Liang, Xiaokun Yang, Hengliang Wang, Zihao Cheng, Lihu Wang, Shiqian Liu, Minfei Li, Zhengdi He, Qianding Gao, Jingli Zhong","doi":"10.1002/jbio.202400154","DOIUrl":"10.1002/jbio.202400154","url":null,"abstract":"<p>In this study, we introduced a novel dual-laser multi-color imaging system. Integrated with a multi-channel filter wheel, this system compared three spectral decontamination algorithms (nonnegative matrix factorization [NMF], RCAN, and PICASSO) showcasing its efficacy in achieving four-color imaging with only two laser sources. Combined with a reliable image reconstruction algorithm, the spatial resolution of four channels super-resolution four-color images reached 130, 125, 133, and 132 nm, respectively. Lipid droplets, mitochondria, lysosomes, and nuclei from the mouse hepatocytes (AML12), human neuroblastoma cells (SH-SY5Y), mouse hippocampal neuronal cells (HT-22), and immortalized murine bone marrow-derived macrophages were imaged. At the same time, the chromatin condensation, nuclear contraction, DNA fragmentation, apoptotic body formation, as well as the fusion of Mito and Lyso involved in mitochondrial autophagy were observed in HT-22 and SH-SY5Y cells suffering oxidative stress. Our multi-color SIM imaging system establishes a powerful platform for dynamic organelle studies and other high-resolution investigations in live cells.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intelligent skin-removal photoacoustic computed tomography for human based on deep learning","authors":"Ning Wang, Tao Chen, Chengbo Liu, Jing Meng","doi":"10.1002/jbio.202400197","DOIUrl":"10.1002/jbio.202400197","url":null,"abstract":"<p>Photoacoustic computed tomography (PACT) has centimeter-level imaging ability and can be used to detect the human body. However, strong photoacoustic signals from skin cover deep tissue information, hindering the frontal display and analysis of photoacoustic images of deep regions of interest. Therefore, we propose a 2.5 D deep learning model based on feature pyramid structure and single-type skin annotation to extract the skin region, and design a mask generation algorithm to remove skin automatically. PACT imaging experiments on the human periphery blood vessel verified the correctness our proposed skin-removal method. Compared with previous studies, our method exhibits high robustness to the uneven illumination, irregular skin boundary, and reconstruction artifacts in the images, and the reconstruction errors of PACT images decreased by 20% ~ 90% with a 1.65 dB improvement in the signal-to-noise ratio at the same time. This study may provide a promising way for high-definition PACT imaging of deep tissues.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}