基于堆叠机器学习方法的头颈部不同原发部位转移性肿瘤诊断研究。

Yifei Liu, Cong Wu, Junpeng Ma, Liang Ma, Chongxuan Tian, Yunze Li, Jinlin Deng, Qize Lv, Wei Li, Miaoqing Zhao
{"title":"基于堆叠机器学习方法的头颈部不同原发部位转移性肿瘤诊断研究。","authors":"Yifei Liu, Cong Wu, Junpeng Ma, Liang Ma, Chongxuan Tian, Yunze Li, Jinlin Deng, Qize Lv, Wei Li, Miaoqing Zhao","doi":"10.1002/jbio.202500044","DOIUrl":null,"url":null,"abstract":"<p><p>Metastatic tumors of the head and neck (MTHN) typically indicate advanced disease with a poor prognosis, originating from cells that spread from other body parts. Diagnosis generally relies on slow and error-prone methods like imaging and histopathology. Addressing the need for a faster, more accurate diagnostic method, this study uses hyperspectral imaging to gather detailed cellular data from 208 patients at six primary MTHN sites. Techniques select characteristic spectral bands, and models including SVM, LightGBM, and ResNet are developed. A high-performance classification model, MTHN-SC, employs stacking technology with SVM and LightGBM as base learners and Random Forest as the meta-learner, achieving a diagnostic accuracy of 82.47%, outperforming other models. This research enhances targeted treatment strategies and advances the application of hyperspectral technology in identifying MTHN primary sites.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500044"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic Study of Head and Neck Metastatic Tumors From Different Primary Sites Based on Stacking Machine Learning Methods.\",\"authors\":\"Yifei Liu, Cong Wu, Junpeng Ma, Liang Ma, Chongxuan Tian, Yunze Li, Jinlin Deng, Qize Lv, Wei Li, Miaoqing Zhao\",\"doi\":\"10.1002/jbio.202500044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metastatic tumors of the head and neck (MTHN) typically indicate advanced disease with a poor prognosis, originating from cells that spread from other body parts. Diagnosis generally relies on slow and error-prone methods like imaging and histopathology. Addressing the need for a faster, more accurate diagnostic method, this study uses hyperspectral imaging to gather detailed cellular data from 208 patients at six primary MTHN sites. Techniques select characteristic spectral bands, and models including SVM, LightGBM, and ResNet are developed. A high-performance classification model, MTHN-SC, employs stacking technology with SVM and LightGBM as base learners and Random Forest as the meta-learner, achieving a diagnostic accuracy of 82.47%, outperforming other models. This research enhances targeted treatment strategies and advances the application of hyperspectral technology in identifying MTHN primary sites.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202500044\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202500044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

头颈部转移性肿瘤(MTHN)通常表明疾病进展,预后差,起源于身体其他部位扩散的细胞。诊断通常依赖于缓慢且容易出错的方法,如成像和组织病理学。为了满足对更快、更准确诊断方法的需求,本研究使用高光谱成像技术收集了来自6个原发性MTHN部位的208名患者的详细细胞数据。利用技术选择特征波段,开发了SVM、LightGBM、ResNet等模型。高性能分类模型MTHN-SC采用堆叠技术,SVM和LightGBM作为基础学习器,Random Forest作为元学习器,诊断准确率达到82.47%,优于其他模型。本研究增强了靶向治疗策略,推进了高光谱技术在MTHN原发部位识别中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnostic Study of Head and Neck Metastatic Tumors From Different Primary Sites Based on Stacking Machine Learning Methods.

Metastatic tumors of the head and neck (MTHN) typically indicate advanced disease with a poor prognosis, originating from cells that spread from other body parts. Diagnosis generally relies on slow and error-prone methods like imaging and histopathology. Addressing the need for a faster, more accurate diagnostic method, this study uses hyperspectral imaging to gather detailed cellular data from 208 patients at six primary MTHN sites. Techniques select characteristic spectral bands, and models including SVM, LightGBM, and ResNet are developed. A high-performance classification model, MTHN-SC, employs stacking technology with SVM and LightGBM as base learners and Random Forest as the meta-learner, achieving a diagnostic accuracy of 82.47%, outperforming other models. This research enhances targeted treatment strategies and advances the application of hyperspectral technology in identifying MTHN primary sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信