{"title":"基于堆叠机器学习方法的头颈部不同原发部位转移性肿瘤诊断研究。","authors":"Yifei Liu, Cong Wu, Junpeng Ma, Liang Ma, Chongxuan Tian, Yunze Li, Jinlin Deng, Qize Lv, Wei Li, Miaoqing Zhao","doi":"10.1002/jbio.202500044","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Metastatic tumors of the head and neck (MTHN) typically indicate advanced disease with a poor prognosis, originating from cells that spread from other body parts. Diagnosis generally relies on slow and error-prone methods like imaging and histopathology. Addressing the need for a faster, more accurate diagnostic method, this study uses hyperspectral imaging to gather detailed cellular data from 208 patients at six primary MTHN sites. Techniques select characteristic spectral bands, and models including SVM, LightGBM, and ResNet are developed. A high-performance classification model, MTHN-SC, employs stacking technology with SVM and LightGBM as base learners and Random Forest as the meta-learner, achieving a diagnostic accuracy of 82.47%, outperforming other models. This research enhances targeted treatment strategies and advances the application of hyperspectral technology in identifying MTHN primary sites.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 10","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic Study of Head and Neck Metastatic Tumors From Different Primary Sites Based on Stacking Machine Learning Methods\",\"authors\":\"Yifei Liu, Cong Wu, Junpeng Ma, Liang Ma, Chongxuan Tian, Yunze Li, Jinlin Deng, Qize Lv, Wei Li, Miaoqing Zhao\",\"doi\":\"10.1002/jbio.202500044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Metastatic tumors of the head and neck (MTHN) typically indicate advanced disease with a poor prognosis, originating from cells that spread from other body parts. Diagnosis generally relies on slow and error-prone methods like imaging and histopathology. Addressing the need for a faster, more accurate diagnostic method, this study uses hyperspectral imaging to gather detailed cellular data from 208 patients at six primary MTHN sites. Techniques select characteristic spectral bands, and models including SVM, LightGBM, and ResNet are developed. A high-performance classification model, MTHN-SC, employs stacking technology with SVM and LightGBM as base learners and Random Forest as the meta-learner, achieving a diagnostic accuracy of 82.47%, outperforming other models. This research enhances targeted treatment strategies and advances the application of hyperspectral technology in identifying MTHN primary sites.</p>\\n </div>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202500044\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202500044","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Diagnostic Study of Head and Neck Metastatic Tumors From Different Primary Sites Based on Stacking Machine Learning Methods
Metastatic tumors of the head and neck (MTHN) typically indicate advanced disease with a poor prognosis, originating from cells that spread from other body parts. Diagnosis generally relies on slow and error-prone methods like imaging and histopathology. Addressing the need for a faster, more accurate diagnostic method, this study uses hyperspectral imaging to gather detailed cellular data from 208 patients at six primary MTHN sites. Techniques select characteristic spectral bands, and models including SVM, LightGBM, and ResNet are developed. A high-performance classification model, MTHN-SC, employs stacking technology with SVM and LightGBM as base learners and Random Forest as the meta-learner, achieving a diagnostic accuracy of 82.47%, outperforming other models. This research enhances targeted treatment strategies and advances the application of hyperspectral technology in identifying MTHN primary sites.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.